rowid,title,contents,year,author,author_slug,published,url,topic 181,Working With RGBA Colour,"When Tim and I were discussing the redesign of this site last year, one of the clear goals was to have a graphical style without making the pages heavy with a lot of images. When we launched, a lot of people were surprised that the design wasn’t built with PNGs. Instead we’d used RGBA colour values, which is part of the CSS3 specification. What is RGBA Colour? We’re all familiar with specifying colours in CSS using by defining the mix of red, green and blue light required to achieve our tone. This is fine and dandy, but whatever values we specify have one thing in common — the colours are all solid, flat, and well, a bit boring. Flat RGB colours CSS3 introduces a couple of new ways to specify colours, and one of those is RGBA. The A stands for Alpha, which refers to the level of opacity of the colour, or to put it another way, the amount of transparency. This means that we can set not only the red, green and blue values, but also control how much of what’s behind the colour shows through. Like with layers in Photoshop. Don’t We Have Opacity Already? The ability to set the opacity on a colour differs subtly from setting the opacity on an element using the CSS opacity property. Let’s look at an example. Here we have an H1 with foreground and background colours set against a page with a patterned background. Heading with no transparency applied h1 { color: rgb(0, 0, 0); background-color: rgb(255, 255, 255); } By setting the CSS opacity property, we can adjust the transparency of the entire element and its contents: Heading with 50% opacity on the element h1 { color: rgb(0, 0, 0); background-color: rgb(255, 255, 255); opacity: 0.5; } RGBA colour gives us something different – the ability to control the opacity of the individual colours rather than the entire element. So we can set the opacity on just the background: 50% opacity on just the background colour h1 { color: rgb(0, 0, 0); background-color: rgba(255, 255, 255, 0.5); } Or leave the background solid and change the opacity on just the text: 50% opacity on just the foreground colour h1 { color: rgba(0, 0, 0, 0.5); background-color: rgb(255, 255, 255); } The How-To You’ll notice that above I’ve been using the rgb() syntax for specifying colours. This is a bit less common than the usual hex codes (like #FFF) but it makes sense when starting to use RGBA. As there’s no way to specify opacity with hex codes, we use rgba() like so: color: rgba(255, 255, 255, 0.5); Just like rgb() the first three values are red, green and blue. You can specify these 0-255 or 0%-100%. The fourth value is the opacity level from 0 (completely transparent) to 1 (completely opaque). You can use this anywhere you’d normally set a colour in CSS — so it’s good for foregrounds and background, borders, outlines and so on. All the transparency effects on this site’s current design are achieved this way. Supporting All Browsers Like a lot of the features we’ll be looking at in this year’s 24 ways, RGBA colour is supported by a lot of the newest browsers, but not the rest. Firefox, Safari, Chrome and Opera browsers all support RGBA, but Internet Explorer does not. Fortunately, due to the robust design of CSS as a language, we can specify RGBA colours for browsers that support it and an alternative for browsers that do not. Falling back to solid colour The simplest technique is to allow the browser to fall back to using a solid colour when opacity isn’t available. The CSS parsing rules specify that any unrecognised value should be ignored. We can make use of this because a browser without RGBA support will treat a colour value specified with rgba() as unrecognised and discard it. So if we specify the colour first using rgb() for all browsers, we can then overwrite it with an rgba() colour for browsers that understand RGBA. h1 { color: rgb(127, 127, 127); color: rgba(0, 0, 0, 0.5); } Falling back to a PNG In cases where you’re using transparency on a background-color (although not on borders or text) it’s possible to fall back to using a PNG with alpha channel to get the same effect. This is less flexible than using CSS as you’ll need to create a new PNG for each level of transparency required, but it can be a useful solution. Using the same principal as before, we can specify the background in a style that all browsers will understand, and then overwrite it in a way that browsers without RGBA support will ignore. h1 { background: transparent url(black50.png); background: rgba(0, 0, 0, 0.5) none; } It’s important to note that this works because we’re using the background shorthand property, enabling us to set both the background colour and background image in a single declaration. It’s this that enables us to rely on the browser ignoring the second declaration when it encounters the unknown rgba() value. Next Steps The really great thing about RGBA colour is that it gives us the ability to create far more graphically rich designs without the need to use images. Not only does that make for faster and lighter pages, but sites which are easier and quicker to build and maintain. CSS values can also be changed in response to user interaction or even manipulated with JavaScript in a way that’s just not so easy using images. Opacity can be changed on :hover or manipulated with JavaScript div { color: rgba(255, 255, 255, 0.8); background-color: rgba(142, 213, 87, 0.3); } div:hover { color: rgba(255, 255, 255, 1); background-color: rgba(142, 213, 87, 0.6); } Clever use of transparency in border colours can help ease the transition between overlay items and the page behind. Borders can receive the RGBA treatment, too div { color: rgb(0, 0, 0); background-color: rgb(255, 255, 255); border: 10px solid rgba(255, 255, 255, 0.3); } In Conclusion That’s a brief insight into RGBA colour, what it’s good for and how it can be used whilst providing support for older browsers. With the current lack of support in Internet Explorer, it’s probably not a technique that commercial designs will want to heavily rely on right away – simply because of the overhead of needing to think about fallback all the time. It is, however, a useful tool to have for those smaller, less critical touches that can really help to finesse a design. As browser support becomes more mainstream, you’ll already be familiar and practised with RGBA and ready to go.",2009,Drew McLellan,drewmclellan,2009-12-01T00:00:00+00:00,https://24ways.org/2009/working-with-rgba-colour/,code 182,Breaking Out The Edges of The Browser,"HTML5 contains more than just the new entities for a more meaningful document, it also contains an arsenal of JavaScript APIs. So many in fact, that some APIs have outgrown the HTML5 spec’s backyard and have been sent away to grow up all on their own and been given the prestigious honour of being specs in their own right. So when I refer to (bendy finger quote) “HTML5”, I mean the HTML5 specification and a handful of other specifications that help us authors build web applications. Examples of those specs I would include in the umbrella term would be: geolocation, web storage, web databases, web sockets and web workers, to name a few. For all you guys and gals, on this special 2009 series of 24 ways, I’m just going to focus on data storage and offline applications: boldly taking your browser where no browser has gone before! Web Storage The Web Storage API is basically cookies on steroids, a unhealthy dosage of steroids. Cookies are always a pain to work with. First of all you have the problem of setting, changing and deleting them. Typically solved by Googling and blindly relying on PPK’s solution. If that wasn’t enough, there’s the 4Kb limit that some of you have hit when you really don’t want to. The Web Storage API gets around all of the hoops you have to jump through with cookies. Storage supports around 5Mb of data per domain (the spec’s recommendation, but it’s open to the browsers to implement anything they like) and splits in to two types of storage objects: sessionStorage – available to all pages on that domain while the window remains open localStorage – available on the domain until manually removed Support Ignoring beta browsers for our support list, below is a list of the major browsers and their support for the Web Storage API: Latest: Internet Explorer, Firefox, Safari (desktop & mobile/iPhone) Partial: Google Chrome (only supports localStorage) Not supported: Opera (as of 10.10) Usage Both sessionStorage and localStorage support the same interface for accessing their contents, so for these examples I’ll use localStorage. The storage interface includes the following methods: setItem(key, value) getItem(key) key(index) removeItem(key) clear() In the simple example below, we’ll use setItem and getItem to store and retrieve data: localStorage.setItem('name', 'Remy'); alert( localStorage.getItem('name') ); Using alert boxes can be a pretty lame way of debugging. Conveniently Safari (and Chrome) include database tab in their debugging tools (cmd+alt+i), so you can get a visual handle on the state of your data: Viewing localStorage As far as I know only Safari has this view on stored data natively in the browser. There may be a Firefox plugin (but I’ve not found it yet!) and IE… well that’s just IE. Even though we’ve used setItem and getItem, there’s also a few other ways you can set and access the data. In the example below, we’re accessing the stored value directly using an expando and equally, you can also set values this way: localStorage.name = ""Remy""; alert( localStorage.name ); // shows ""Remy"" The Web Storage API also has a key method, which is zero based, and returns the key in which data has been stored. This should also be in the same order that you set the keys, for example: alert( localStorage.getItem(localStorage.key(0)) ); // shows ""Remy"" I mention the key() method because it’s not an unlikely name for a stored value. This can cause serious problems though. When selecting the names for your keys, you need to be sure you don’t take one of the method names that are already on the storage object, like key, clear, etc. As there are no warnings when you try to overwrite the methods, it means when you come to access the key() method, the call breaks as key is a string value and not a function. You can try this yourself by creating a new stored value using localStorage.key = ""foo"" and you’ll see that the Safari debugger breaks because it relies on the key() method to enumerate each of the stored values. Usage Notes Currently all browsers only support storing strings. This also means if you store a numeric, it will get converted to a string: localStorage.setItem('count', 31); alert(typeof localStorage.getItem('count')); // shows ""string"" This also means you can’t store more complicated objects natively with the storage objects. To get around this, you can use Douglas Crockford’s JSON parser (though Firefox 3.5 has JSON parsing support baked in to the browser – yay!) json2.js to convert the object to a stringified JSON object: var person = { name: 'Remy', height: 'short', location: 'Brighton, UK' }; localStorage.setItem('person', JSON.stringify(person)); alert( JSON.parse(localStorage.getItem('person')).name ); // shows ""Remy"" Alternatives There are a few solutions out there that provide storage solutions that detect the Web Storage API, and if it’s not available, fall back to different technologies (for instance, using a flash object to store data). One comprehensive version of this is Dojo’s storage library. I’m personally more of a fan of libraries that plug missing functionality under the same namespace, just as Crockford’s JSON parser does (above). For those interested it what that might look like, I’ve mocked together a simple implementation of sessionStorage. Note that it’s incomplete (because it’s missing the key method), and it could be refactored to not using the JSON stringify (but you would need to ensure that the values were properly and safely encoded): // requires json2.js for all browsers other than Firefox 3.5 if (!window.sessionStorage && JSON) { window.sessionStorage = (function () { // window.top.name ensures top level, and supports around 2Mb var data = window.top.name ? JSON.parse(window.top.name) : {}; return { setItem: function (key, value) { data[key] = value+""""; // force to string window.top.name = JSON.stringify(data); }, removeItem: function (key) { delete data[key]; window.top.name = JSON.stringify(data); }, getItem: function (key) { return data[key] || null; }, clear: function () { data = {}; window.top.name = ''; } }; })(); } Now that we’ve cracked the cookie jar with our oversized Web Storage API, let’s have a look at how we take our applications offline entirely. Offline Applications Offline applications is (still) part of the HTML5 specification. It allows developers to build a web app and have it still function without an internet connection. The app is access via the same URL as it would be if the user were online, but the contents (or what the developer specifies) is served up to the browser from a local cache. From there it’s just an everyday stroll through open web technologies, i.e. you still have access to the Web Storage API and anything else you can do without a web connection. For this section, I’ll refer you to a prototype demo I wrote recently of a contrived Rubik’s cube (contrived because it doesn’t work and it only works in Safari because I’m using 3D transforms). Offline Rubik’s cube Support Support for offline applications is still fairly limited, but the possibilities of offline applications is pretty exciting, particularly as we’re seeing mobile support and support in applications such as Fluid (and I would expect other render engine wrapping apps). Support currently, is as follows: Latest: Safari (desktop & mobile/iPhone) Sort of: Firefox‡ Not supported: Internet Explorer, Opera, Google Chrome ‡ Firefox 3.5 was released to include offline support, but in fact has bugs where it doesn’t work properly (certainly on the Mac), Minefield (Firefox beta) has resolved the bug. Usage The status of the application’s cache can be tested from the window.applicationCache object. However, we’ll first look at how to enable your app for offline access. You need to create a manifest file, which will tell the browser what to cache, and then we point our web page to that cache: For the manifest to be properly read by the browser, your server needs to serve the .manifest files as text/manifest by adding the following to your mime.types: text/cache-manifest manifest Next we need to populate our manifest file so the browser can read it: CACHE MANIFEST /demo/rubiks/index.html /demo/rubiks/style.css /demo/rubiks/jquery.min.js /demo/rubiks/rubiks.js # version 15 The first line of the manifest must read CACHE MANIFEST. Then subsequent lines tell the browser what to cache. The HTML5 spec recommends that you include the calling web page (in my case index.html), but it’s not required. If I didn’t include index.html, the browser would cache it as part of the offline resources. These resources are implicitly under the CACHE namespace (which you can specify any number of times if you want to). In addition, there are two further namespaces: NETWORK and FALLBACK. NETWORK is a whitelist namespace that tells the browser not to cache this resource and always try to request it through the network. FALLBACK tells the browser that whilst in offline mode, if the resource isn’t available, it should return the fallback resource. Finally, in my example I’ve included a comment with a version number. This is because once you include a manifest, the only way you can tell the browser to reload the resources is if the manifest contents changes. So I’ve included a version number in the manifest which I can change forcing the browser to reload all of the assets. How it works If you’re building an app that makes use of the offline cache, I would strongly recommend that you add the manifest last. The browser implementations are very new, so can sometimes get a bit tricky to debug since once the resources are cached, they really stick in the browser. These are the steps that happen during a request for an app with a manifest: Browser: sends request for your app.html Server: serves all associated resources with app.html – as normal Browser: notices that app.html has a manifest, it re-request the assets in the manifest Server: serves the requested manifest assets (again) Browser: window.applicationCache has a status of UPDATEREADY Browser: reloads Browser: only request manifest file (which doesn’t show on the net requests panel) Server: responds with 304 Not Modified on the manifest file Browser: serves all the cached resources locally What might also add confusion to this process, is that the way the browsers work (currently) is if there is a cache already in place, it will use this first over updated resources. So if your manifest has changed, the browser will have already loaded the offline cache, so the user will only see the updated on the next reload. This may seem a bit convoluted, but you can also trigger some of this manually through the applicationCache methods which can ease some of this pain. If you bind to the online event you can manually try to update the offline cache. If the cache has then updated, swap the updated resources in to the cache and the next time the app loads it will be up to date. You could also prompt your user to reload the app (which is just a refresh) if there’s an update available. For example (though this is just pseudo code): addEvent(applicationCache, 'updateready', function () { applicationCache.swapCache(); tellUserToRefresh(); }); addEvent(window, 'online', function () { applicationCache.update(); }); Breaking out of the Browser So that’s two different technologies that you can use to break out of the traditional browser/web page model and get your apps working in a more application-ny way. There’s loads more in the HTML5 and non-HTML5 APIs to play with, so take your Christmas break to check them out!",2009,Remy Sharp,remysharp,2009-12-02T00:00:00+00:00,https://24ways.org/2009/breaking-out-the-edges-of-the-browser/,code 179,Have a Field Day with HTML5 Forms,"Forms are usually seen as that obnoxious thing we have to markup and style. I respectfully disagree: forms (on a par with tables) are the most exciting thing we have to work with. Here we’re going to take a look at how to style a beautiful HTML5 form using some advanced CSS and latest CSS3 techniques. I promise you will want to style your own forms after you’ve read this article. Here’s what we’ll be creating: The form. (Icons from Chalkwork Payments) Meaningful markup We’re going to style a simple payment form. There are three main sections on this form: The person’s details The address details The credit card details We are also going to use some of HTML5’s new input types and attributes to create more meaningful fields and use less unnecessary classes and ids: email, for the email field tel, for the telephone field number, for the credit card number and security code required, for required fields placeholder, for the hints within some of the fields autofocus, to put focus on the first input field when the page loads There are a million more new input types and form attributes on HTML5, and you should definitely take a look at what’s new on the W3C website. Hopefully this will give you a good idea of how much more fun form markup can be. A good foundation Each section of the form will be contained within its own fieldset. In the case of the radio buttons for choosing the card type, we will enclose those options in another nested fieldset. We will also be using an ordered list to group each label / input pair. This will provide us with a (kind of) semantic styling hook and it will also make the form easier to read when viewing with no CSS applied: The unstyled form So here’s the markup we are going to be working with:
Your details
Delivery address
Card details
  1. Card type
Making things look nice First things first, so let’s start by adding some defaults to our form by resetting the margins and paddings of the elements and adding a default font to the page: html, body, h1, form, fieldset, legend, ol, li { margin: 0; padding: 0; } body { background: #ffffff; color: #111111; font-family: Georgia, ""Times New Roman"", Times, serif; padding: 20px; } Next we are going to style the form element that is wrapping our fields: form#payment { background: #9cbc2c; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; padding: 20px; width: 400px; } We will also remove the border from the fieldset and apply some bottom margin to it. Using the :last-of-type pseudo-class, we remove the bottom margin of the last fieldset — there is no need for it: form#payment fieldset { border: none; margin-bottom: 10px; } form#payment fieldset:last-of-type { margin-bottom: 0; } Next we’ll make the legends big and bold, and we will also apply a light-green text-shadow, to add that little extra special detail: form#payment legend { color: #384313; font-size: 16px; font-weight: bold; padding-bottom: 10px; text-shadow: 0 1px 1px #c0d576; } Our legends are looking great, but how about adding a clear indication of how many steps our form has? Instead of adding that manually to every legend, we can use automatically generated counters. To add a counter to an element, we have to use either the :before or :after pseudo-elements to add content via CSS. We will follow these steps: create a counter using the counter-reset property on the form element call the counter with the content property (using the same name we’ve created before) with the counter-incremet property, indicate that for each element that matches our selector, that counter will be increased by 1 form#payment > fieldset > legend:before { content: ""Step "" counter(fieldsets) "": ""; counter-increment: fieldsets; } Finally, we need to change the style of the legend that is part of the radio buttons group, to make it look like a label: form#payment fieldset fieldset legend { color: #111111; font-size: 13px; font-weight: normal; padding-bottom: 0; } Styling the lists For our list elements, we’ll just add some nice rounded corners and semi-transparent border and background. Because we are using RGBa colors, we should provide a fallback for browsers that don’t support them (that comes before the RBGa color). For the nested lists, we will remove these properties because they would be overlapping: form#payment ol li { background: #b9cf6a; background: rgba(255,255,255,.3); border-color: #e3ebc3; border-color: rgba(255,255,255,.6); border-style: solid; border-width: 2px; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-radius: 5px; line-height: 30px; list-style: none; padding: 5px 10px; margin-bottom: 2px; } form#payment ol ol li { background: none; border: none; float: left; } Form controls Now we only need to style our labels, inputs and the button element. All our labels will look the same, with the exception of the one for the radio elements. We will float them to the left and give them a width. For the credit card type labels, we will add an icon as the background, and override some of the properties that aren’t necessary. We will be using the attribute selector to specify the background image for each label — in this case, we use the for attribute of each label. To add an extra user-friendly detail, we’ll add a cursor: pointer to the radio button labels on the :hover state, so the user knows that he can simply click them to select that option. form#payment label { float: left; font-size: 13px; width: 110px; } form#payment fieldset fieldset label { background:none no-repeat left 50%; line-height: 20px; padding: 0 0 0 30px; width: auto; } form#payment label[for=visa] { background-image: url(visa.gif); } form#payment label[for=amex] { background-image: url(amex.gif); } form#payment label[for=mastercard] { background-image: url(mastercard.gif); } form#payment fieldset fieldset label:hover { cursor: pointer; } Almost there! Now onto the input elements. Here we want to match all inputs, except for the radio ones, and the textarea. For that we will use the negation pseudo-class (:not()). With it we can target all input elements except for the ones with type of radio. We will also make sure to add some :focus styles and add the appropriate styling for the radio inputs: form#payment input:not([type=radio]), form#payment textarea { background: #ffffff; border: none; -moz-border-radius: 3px; -webkit-border-radius: 3px; -khtml-border-radius: 3px; border-radius: 3px; font: italic 13px Georgia, ""Times New Roman"", Times, serif; outline: none; padding: 5px; width: 200px; } form#payment input:not([type=submit]):focus, form#payment textarea:focus { background: #eaeaea; } form#payment input[type=radio] { float: left; margin-right: 5px; } And finally we come to our submit button. To it, we will just add some nice typography and text-shadow, align it to the center of the form and give it some background colors for its different states: form#payment button { background: #384313; border: none; -moz-border-radius: 20px; -webkit-border-radius: 20px; -khtml-border-radius: 20px; border-radius: 20px; color: #ffffff; display: block; font: 18px Georgia, ""Times New Roman"", Times, serif; letter-spacing: 1px; margin: auto; padding: 7px 25px; text-shadow: 0 1px 1px #000000; text-transform: uppercase; } form#payment button:hover { background: #1e2506; cursor: pointer; } And that’s it! See the completed form. This form will not look the same on every browser. Internet Explorer and Opera don’t support border-radius (at least not for now); the new input types are rendered as just normal inputs on some browsers; and some of the most advanced CSS, like the counter, :last-of-type or text-shadow are not supported on some browsers. But that doesn’t mean you can’t use them right now, and simplify your development process. My gift to you!",2009,Inayaili de León Persson,inayailideleon,2009-12-03T00:00:00+00:00,https://24ways.org/2009/have-a-field-day-with-html5-forms/,code 176,What makes a website successful? It might not be what you expect!,"What makes some sites succeed and others fail? Put another way, when you are asked to redesign an existing website, what problems are you looking out for and where do you concentrate your efforts? I would argue that as web designers we spend too much time looking at the wrong kind of problem. I recently ran a free open door consultancy clinic to celebrate the launch of my new book (yes I know, two shameless plugs in one sentence). This involved various website owners volunteering their sites for review. Both myself and the audience then provided feedback. What quickly became apparent is that the feedback being given by the audience was biased towards design and development. Although their comments were excellent it focused almost exclusively on the quality of code, site aesthetics and usability. To address these issues in isolation is similar to treating symptoms and ignoring the underlying illness. Cure the illness not the symptoms Poor design, bad usability and terribly written code are symptoms of bigger problems. Often when we endeavour to address these symptoms, we meet resistance from our clients and become frustrated. This is because our clients are still struggling with fundamental concepts we take for granted. Before we can address issues of aesthetics, usability and code, we need to tackle business objectives, calls to action and user tasks. Without dealing with these fundamental principles our clients’ website will fail. Let me address each in turn: Understand the business objectives Do you ask your clients why they have a website? It feels like an obvious question. However, it is surprising how many clients do not have an answer. Without having a clear idea of the siteʼs business objectives, the client has no way to know whether it is succeeding. This means they have no justification for further investment and that leads to quibbling over every penny. However most importantly, without clearly defined business aims they have no standard against which to base their decisions. Everything becomes subjective and that will inevitably lead to problems. Before we start discussing design, usability and development, we need to focus our clients on establishing concrete business objectives. This will provide a framework for decision making during the development phase. This will not only help the client make decisions, it will also focus them on the business and away from micro managing the design. Establish clear calls to action Once business objectives have been set this opens up the possibility to establish clear calls to action. I am amazed at how few website owners can name their calls to action. However, I am even more staggered at how few web designers ask about them. Calls to action are not just limited to ecommerce sites. Whether you are asking people to sign up for a newsletter or complete a contact us form, every site should have a desired objective for users. What is more, each page of a site should have micro calls to action that always draw users on and never leave them at a dead end. Without clearly defined calls to action you cannot successfully design a site, structure the user experience or measure its success. They bring focus to the site and encourage the client to concentrate their efforts on helping people reach those goals. Of course in order to know if a call to action is going to work, it is necessary to do some user testing. Test against the right tasks As web designers we all like to boast about being ʻuser centricʼ whatever that means! However, in reality I think many of us are paying lip service to the subject. Sure, we ask our clients about who their users are and maybe even do some usability testing. However, usability testing is no good if we are not asking the right questions. Again we find ourselves working on a superficial level rather than tackling the deeper issues. Clients find it relatively easy to tell you who their target audience is. Admittedly the list they come back with is often overly long and contains a lot of edge cases. However, where they begin to struggle is articulating what these users will want to achieve on the website. They know who they want to reach. However, they cannot always tell you why those people would be interested in the site. These user tasks are another fundamental building block for any successful website. Although it is important for a website owner to understand what their objectives are and what they want users to do, it is even more important that they understand the users objectives as well. Again, this provides context for the decisions they are making about design, usability and functionality. Without it the site will become self serving, largely ignoring the needs of users. User tasks help to focus the clientʼs mind on the needs of their user, rather than what they can get out of them. So am I claiming that design, usability and code do not matter? Well the shocking truth is that to some extent I am! The shocking truth Whether we like it or not there is significant evidence that you can create a successful website with bad design, terrible code and without ever running a usability test session. You only need to look at the design of Craigslist or the code of Amazon to see that this is true. However, I do not believe it is possible to build a successful website without business objectives, calls to action and a clear idea of user tasks. Do not misunderstand me. I do believe design, usability and code matters. I just believe that they only matter if the fundamentals are already in place. These things improve a solid foundation but are no use in their own right. As web designers it is our responsibility to ensure fundamental questions are being asked, before we start exploring other issues. If we do not, our websites will look great, be well coded and have gone through endless usability tests, however it will not be truly successful.",2009,Paul Boag,paulboag,2009-12-04T00:00:00+00:00,https://24ways.org/2009/what-makes-a-website-successful/,business 177,"HTML5: Tool of Satan, or Yule of Santa?","It would lead to unseasonal arguments to discuss the title of this piece here, and the arguments are as indigestible as the fourth turkey curry of the season, so we’ll restrict our article to the practical rather than the philosophical: what HTML5 can you reasonably expect to be able to use reliably cross-browser in the early months of 2010? The answer is that you can use more than you might think, due to the seasonal tinsel of feature-detection and using the sparkly pixie-dust of IE-only VML (but used in a way that won’t damage your Elf). Canvas canvas is a 2D drawing API that defines a blank area of the screen of arbitrary size, and allows you to draw on it using JavaScript. The pictures can be animated, such as in this canvas mashup of Wolfenstein 3D and Flickr. (The difference between canvas and SVG is that SVG uses vector graphics, so is infinitely scalable. It also keeps a DOM, whereas canvas is just pixels so you have to do all your own book-keeping yourself in JavaScript if you want to know where aliens are on screen, or do collision detection.) Previously, you needed to do this using Adobe Flash or Java applets, requiring plugins and potentially compromising keyboard accessibility. Canvas drawing is supported now in Opera, Safari, Chrome and Firefox. The reindeer in the corner is, of course, Internet Explorer, which currently has zero support for canvas (or SVG, come to that). Now, don’t pull a face like all you’ve found in your Yuletide stocking is a mouldy satsuma and a couple of nuts—that’s not the end of the story. Canvas was originally an Apple proprietary technology, and Internet Explorer had a similar one called Vector Markup Language which was submitted to the W3C for standardisation in 1998 but which, unlike canvas, was not blessed with retrospective standardisation. What you need, then, is some way for Internet Explorer to translate canvas to VML on-the-fly, while leaving the other, more standards-compliant browsers to use the HTML5. And such a way exists—it’s a JavaScript library called excanvas. It’s downloadable from http://code.google.com/p/explorercanvas/ and it’s simple to include it via a conditional comment in the head for IE: Simply include this, and your canvas will be natively supported in the modern browsers (and the library won’t even be downloaded) whereas IE will suddenly render your canvas using its own VML engine. Be sure, however, to check it carefully, as the IE JavaScript engine isn’t so fast and you’ll need to be sure that performance isn’t too degraded to use. Forms Since the beginning of the Web, developers have been coding forms, and then writing JavaScript to check whether an input is a correctly formed email address, URL, credit card number or conforms to some other pattern. The cumulative labour of the world’s developers over the last 15 years makes whizzing round in a sleigh and delivering presents seem like popping to the corner shop in comparison. With HTML5, that’s all about to change. As Yaili began to explore on Day 3, a host of new attributes to the input element provide built-in validation for email address formats (input type=email), URLs (input type=url), any pattern that can be expressed with a JavaScript-syntax regex (pattern=""[0-9][A-Z]{3}"") and the like. New attributes such as required, autofocus, input type=number min=3 max=50 remove much of the tedious JavaScript from form validation. Other, really exciting input types are available (see all input types). The datalist is reminiscent of a select box, but allows the user to enter their own text if they don’t want to choose one of the pre-defined options. input type=range is rendered as a slider, while input type=date pops up a date picker, all natively in the browser with no JavaScript required at all. Currently, support is most complete in an experimental implementation in Opera and a number of the new attributes in Webkit-based browsers. But don’t let that stop you! The clever thing about the specification of the new Web Forms is that all the new input types are attributes (rather than elements). input defaults to input type=text, so if a browser doesn’t understand a new HTML5 type, it gracefully degrades to a plain text input. So where does that leave validation in those browsers that don’t support Web Forms? The answer is that you don’t retire your pre-existing JavaScript validation just yet, but you leave it as a fallback after doing some feature detection. To detect whether (say) input type=email is supported, you make a new input type=email with JavaScript but don’t add it to the page. Then, you interrogate your new element to find out what its type attribute is. If it’s reported back as “email”, then the browser supports the new feature, so let it do its work and don’t bring in any JavaScript validation. If it’s reported back as “text”, it’s fallen back to the default, indicating that it’s not supported, so your code should branch to your old validation routines. Alternatively, use the small (7K) Modernizr library which will do this work for you and give you JavaScript booleans like Modernizr.inputtypes[email] set to true or false. So what does this buy you? Well, first and foremost, you’re future-proofing your code for that time when all browsers support these hugely useful additions to forms. Secondly, you buy a usability and accessibility win. Although it’s tempting to style the stuffing out of your form fields (which can, incidentally, lead to madness), whatever your branding people say, it’s better to leave forms as close to the browser defaults as possible. A browser’s slider and date pickers will be the same across different sites, making it much more comprehensible to users. And, by using native controls rather than faking sliders and date pickers with JavaScript, your forms are much more likely to be accessible to users of assistive technology. HTML5 DOCTYPE You can use the new DOCTYPE !doctype html now and – hey presto – you’re writing HTML5, as it’s pretty much a superset of HTML4. There are some useful advantages to doing this. The first is that the HTML5 validator (I use http://html5.validator.nu) also validates ARIA information, whereas the HTML4 validator doesn’t, as ARIA is a new spec developed after HTML4. (Actually, it’s more accurate to say that it doesn’t validate your ARIA attributes, but it doesn’t automatically report them as an error.) Another advantage is that HTML5 allows tabindex as a global attribute (that is, on any element). Although originally designed as an accessibility bolt-on, I ordinarily advise you don’t use it; a well-structured page should provide a logical tab order through links and form fields already. However, tabindex=""-1"" is a legal value in HTML5 as it allows for the element to be programmatically focussable by JavaScript. It’s also very useful for correcting a bug in Internet Explorer when used with a keyboard; in-page links go nowhere if the destination doesn’t have a proprietary property called hasLayout set or a tabindex of -1. So, whether it is the tool of Satan or yule of Santa, HTML5 is just around the corner. Some you can use now, and by the end of 2010 I predict you’ll be able to use a whole lot more as new browser versions are released.",2009,Bruce Lawson,brucelawson,2009-12-05T00:00:00+00:00,https://24ways.org/2009/html5-tool-of-satan-or-yule-of-santa/,code 175,Front-End Code Reusability with CSS and JavaScript,"Most web standards-based developers are more than familiar with creating their sites with semantic HTML with lots and lots of CSS. With each new page in a design, the CSS tends to grow and grow and more elements and styles are added. But CSS can be used to better effect. The idea of object-oriented CSS isn’t new. Nicole Sullivan has written a presentation on the subject and outlines two main concepts: separate structure and visual design; and separate container and content. Jeff Croft talks about Applying OOP Concepts to CSS: I can make a class of .box that defines some basic layout structure, and another class of .rounded that provides rounded corners, and classes of .wide and .narrow that define some widths, and then easily create boxes of varying widths and styles by assigning multiple classes to an element, without having to duplicate code in my CSS. This concept helps reduce CSS file size, allows for great flexibility, rapid building of similar content areas and means greater consistency throughout the entire design. You can also take this concept one step further and apply it to site behaviour with JavaScript. Build a versatile slideshow I will show you how to build multiple slideshows using jQuery, allowing varying levels of functionality which you may find on one site design. The code will be flexible enough to allow you to add previous/next links, image pagination and the ability to change the animation type. More importantly, it will allow you to apply any combination of these features. Image galleries are simply a list of images, so the obvious choice of marking the content up is to use a