rowid,title,contents,year,author,author_slug,published,url,topic 77,Colour Accessibility,"Here’s a quote from Josef Albers: In visual perception a colour is almost never seen as it really is[…] This fact makes colour the most relative medium in art.Josef Albers, Interaction of Color, 1963 Albers was a German abstract painter and teacher, and published a very famous course on colour theory in 1963. Colour is very relative — not just in the way that it appears differently across different devices due to screen quality and colour management, but it can also be seen differently by different people — something we really need to be more mindful of when designing. What is colour blindness? Colour blindness very rarely means that you can’t see any colour at all, or that people see things in greyscale. It’s actually a decreased ability to see colour, or a decreased ability to tell colours apart from one another. How does it happen? Inside the typical human retina, there are two types of receptor cells — rods and cones. Rods are the cells that allow us to see dark and light, and shape and movement. Cones are the cells that allow us to perceive colour. There are three types of cones, each responsible for absorbing blue, red, and green wavelengths in the spectrum. Problems with colour vision occur when one or more of these types of cones are defective or absent entirely, and these problems can either be inherited through genetics, or acquired through trauma, exposure to ultraviolet light, degeneration with age, an effect of diabetes, or other factors. Colour blindness is a sex-linked trait and it’s much more common in men than in women. The most common type of colour blindness is called deuteranomaly which occurs in 7% of males, but only 0.5% of females. That’s a pretty significant portion of the population if you really stop and think about it — we can’t ignore this demographic. What does it look like? People with the most common types of colour blindness, like protanopia and deuteranopia, have difficulty discriminating between red and green hues. There are also forms of colour blindness like tritanopia, which affects perception of blue and yellow hues. Below, you can see what a colour wheel might look like to these different people. What can we do? Here are some things you can do to make your websites and apps more accessible to people with all types of colour blindness. Include colour names and show examples One of the most common annoyances I’ve heard from people who are colour-blind is that they often have difficulty purchasing clothing and they will sometimes need to ask another person for a second opinion on what the colour of the clothing might actually be. While it’s easier to shop online than in a physical store, there are still accessibility issues to consider on shopping websites. Let’s say you’ve got a website that sells T-shirts. If you only show a photo of the shirt, it may be impossible for a person to tell what colour the shirt really is. For clarification, be sure to reference the name of the colour in the description of the product. United Pixelworkers does a great job of following this rule. The St. John’s T-shirt has a quirky palette inspired by the unofficial pink, white and green Newfoundland flag, and I can imagine many people not liking it. Another common problem occurs when a colour filter has been added to a product search. Here’s an example from a clothing website with unlabelled colour swatches, and how that might look to someone with deuteranopia-type colour blindness. The colour search filter below, from the H&M website, is much better since it uses names instead. At first glance, Urban Outfitters also uses unlabelled colour swatches on product pages (below), but on closer inspection, the colour name is displayed on hover. This isn’t an ideal solution, because although it’ll work on a desktop browser, it won’t work on a touchscreen device where hovering isn’t an option. Using overly fancy colour names, like the ones you might find labelling high-end interior paint can be just as confusing as not using a colour name at all. Names like grape instead of purple don’t really give the viewer any useful information about what the colour actually is on a colour wheel. Is grape supposed to be purple, or could it refer to red grapes or even green? Stick with hue names as much as possible. Avoid colour-specific instructions When designing forms, avoid labelling required fields only with coloured text. It’s safer to use a symbol cue like the asterisk which is colour-independent. A similar example would be directing a user to click a green button to purchase a product. Label your buttons clearly and reference them in the site copy by function, not colour, to avoid confusion. Don’t rely on colour coding Designing accessible maps and infographics can be much more challenging. Don’t rely on colour coding alone — try to use a combination of colour and texture or pattern, along with precise labels, and reflect this in the key or legend. Combine a blue background with a crosshatched pattern, or a pink background with a stippled dot — your users will always have two pieces of information to work with. The map of the London subway system is an iconic image not just in London, but around the world. Unfortunately, it contains some colours that are indistinguishable from each other to a person with a vision problem. This is true not only for the London underground, but also for any other wayfinding system that relies on colour coding as the only key in a legend. There are printable versions of the map available online in black and white, using patterns and shades of black and grey that are distinguishable, but the point is that there would be no need for such a map if it were designed with accessibility in mind from the beginning. And, if you’re a person who has a physical disability as well as a vision problem, the “Step-Free” guide map which shows stations is based on the original coloured map. Provide alternatives and customization While it’s best to consider these issues and design your app to be accessible by default, sometimes this might not be possible. Providing alternative styles or allowing users to edit their own colours is a feature to keep in mind. The developers of the game Faster Than Light created an alternate colour-blind mode and asked for public feedback to make sure that it passed the test. Not much needed to be done, but you can see they added stripes to the red zones and changed some outlines to blue. iChat is also a good example. Although by default it uses coloured bubbles to indicate a user’s status (available for chat, away or idle, or busy), included in the preferences is a “User Shapes to Indicate Status” option, which changes the shape of the standard circles to green circles, yellow triangles and red squares. Pay attention to contrast Colours that are similar in value but different in hue may be easy to distinguish between for a user with good vision, but a person who suffers from colour blindness may not be able to tell them apart at all. Proofing your work in greyscale is a quick way to tell if there’s enough contrast between the most important information in your design. Check with a simulator There are many tools out there for simulating different types of colour blindness, and it’s worth checking your design to catch any potential problems up front. One is called Sim Daltonism and it’s available for Mac OS X. It’ll show a pop-up preview next to your cursor and you can choose which type of colour blindness you want to test from a drop-down menu. You can also proof for the two most common types of colour blindness right in Photoshop or Illustrator (CS4 and later) while you’re designing. The colour contrast check tool from designer and developer Jonathan Snook gives you the option to enter a colour code for a background, and a colour code for text, and it’ll tell you if the colour contrast ratio meets the Web Content Accessibility Guidelines 2.0. You can use the built-in sliders to adjust your colours until they meet the compliant contrast ratios. This is a great tool to test your palette before going live. For live websites, you can use the accessibility tool called WAVE, which also has a contrast checker. It’s important to keep in mind, though, that while WAVE can identify contrast errors in text, other things can slip through, so a site that passes the test does not automatically mean it’s accessible in reality. For example, the contrast checker here doesn’t notice that our red link in the introduction isn’t underlined, and therefore could blend into the surrounding paragraph text. I know that once I started getting into the habit of checking my work in a simulator, I became more mindful of any potential problem areas and it was easier to avoid them up front. It’s also made me question everything I see around me and it sends red flags off in my head if I think it’s a serious colour blindness fail. Understanding that colour is relative in the planning stages and following these tips will help us make more accessible design for all.",2012,Geri Coady,gericoady,2012-12-04T00:00:00+00:00,https://24ways.org/2012/colour-accessibility/,design 93,Design Systems,"The most important part of responsive web design is that, no matter what the viewport width, the content is accessible in an optimum display. The best responsive designs are those that allow you to go from one optimised display to another, but with the feeling that these experiences are part of a greater product whole. Responsive design: where we’ve been going wrong Responsive web design was a shock to my web designer system. Those of us who had already been designing sites for mobile probably had the biggest leap to make. We might have been detecting user agents in order to deliver a mobile-specific site, or using the slightly more familiar Bushido technique to deliver sites optimised for device type and viewport size, but either way our focus was on devices. A site was optimised for either a mobile phone or a desktop. Responsive web design brought us back to pre-table layout fluid sites that expanded or contracted to fit the viewport. This was a big difference to get our heads around when we were so used to designing for fixed-width layouts. Suddenly, an element could be any width or, at least, we needed to consider its maximum and minimum widths. Pixel perfection, while pretty, became wholly unrealistic, and a whole load of designers who prided themselves in detailed and precise designs got a bit scared. Hanging on to our previous processes and typical deliverables led us to continue to optimise our sites for particular devices and provide pixel-perfect mockups for those device widths. With all this we were concentrating on devices, not content, deliverables and not process, and making assumptions about users and their devices based on nothing but the width of the viewport. I don’t think this is a crime, I think it was inevitable. We can be up to date with our principles and ideals, but it’s never as easy in practice. That’s why it’s more important than ever to share our successful techniques and processes. Let’s drag each other into modern web design. Design systems: the principles What are design systems? A visual design system is built out of the core components of typography, layout, shape or form, and colour. When considering the design of a whole product, a design system should also include patterns in user flow, content strategy, copy, and tone of voice. These concepts, design decisions or rules, created around the core components are used consistently across your product to create a cohesive feel, whether it’s from one element to another, page to page, or viewport width to viewport width. Responsive design is one of the most important considerations in the components of a design system. For each component, you must decide what will unite the design across the viewports to maintain that consistent feel, and what parts of the design will differentiate in order to provide a flexible and optimal experience for different viewport sizes. Components you might keep the same across viewports typeface base unit colour shape/form Components you might differentiate across viewports grids layout font size measure (line length) leading (line height) Content: it must always be the same The focus of a design system is the optimum display of content. As Mark Boulton put it, designing “content out, not canvas in.” Chris Armstrong puts the emphasis on not designing for viewports but for content – “we need to build on what we do know: content.” In order to do this, we must share the same content across all devices and focus on how best to display and represent content through design system components. The practical: core visual components Typography first When you work with a lot of text content, typography is the easiest way to set the visual tone of the design across all viewport widths. It’s likely that you’ll choose one or two typefaces to use across the whole system, but you might change the most legible font size, balanced with the most comfortable measure, as the viewport width changes. Where typography meets layout The unit on which you choose to base the grid and layout design, font sizes and leading could be based on the typeface, an optimal reading size, or something more arbitrary. Sometimes I’ll choose a unit based on multiples of ten because it makes the maths in the CSS easier. Tim Brown suggests trying a modular scale. Chris Armstrong suggests basing it on your ideal measure, or the width of a fixed item of content such as an ad unit. Grids and layouts Sensible grid design can be a flexible yet solid foundation for your design system layout component. But you must be wary in responsive design that a grid might not work across all widths: even four columns could make for very cramped content and one-word measures on smaller screens. Maybe the grid columns are something you differentiate across widths, but you can keep the concept of the grid consistent. If the content has blocks in groups of three, you might decide on a three-column grid which folds down to one column for narrow viewports. If the grid focuses on the idea of symmetry and has a four-column grid on larger viewports, it might fold down to two columns for narrower viewports. These consistencies may seem subtle, not at all obvious to many except the designer, but it’s all these little constants and patterns across the whole of the design system that makes design decisions easier to make (as they adhere to the guiding concepts of your system), and give the product a uniform feel no matter what the device. Shape or form The shape or form components are concepts you already use in fixed-width web design for a strong, consistent look and feel. Since CSS border-radius became widely supported by browsers, a lot of designs feature circle themes. These are very distinctive and can be used across viewport widths giving them the same united feel, even if they’re not used in the same way. This could also apply to border styles, consistent shadows and any number of decorative details and textures. These are the elements that make up the shape or form of a design system. Colour Colour is the most basic way to reinforce a brand and unite experiences across viewports. The same hex colour used system-wide is instantly recognisable, no matter what the viewport width. The process While using a design system isn’t necessarily attached to any particular process, it does lend itself to some process ideals. Detaching design considerations from viewport widths A design system allows you to focus separately on the components that make up the system, disconnecting the look and feel from the layout. This helps prevent us getting stuck in the rut of the Apple breakpoints (brilliantly coined by Simon Foster) of mobile, tablet and desktop. It also forces us to design for variation in viewport experiences side by side, not one after the other. Design in the browser I can’t start off designing in the browser – it just doesn’t seem to bring out my creative side (and I’m incredibly envious of you if you can; I just have to start on paper) – but static mock-ups aren’t the only alternative. Style guides and style tiles are perfect for expressing the concepts of your design system. Pattern libraries could also work well. Mock-ups and breakpoints At some point, whether it’s to test your system ideas, or because a client needs help visualising how your system might work, you may end up producing some static mock-ups. It’s not the end of the world, but you must ensure that these consider all the viewports, not just those of the iDevices, or even the devices currently on the market. You need to decide the breakpoints where the states of your design change. The blocks within your content will always have optimum points for their display (based on their hierarchy, density, width, or type of interaction) and so your breakpoints should be based around these points. These are probably the ideal points at which to produce static mockups; treat them as snapshots. They’re not necessarily mock-ups, so much as a way of capturing how your design system would be interpreted when frozen at that particular viewport width. The future Creating design systems will give us the flexibility we need for working with the unknown devices of the future. It may be a change in process, but it shouldn’t be too much of a difference in thinking. The pioneers in responsive design have a hard job. Some of these problems may have already been solved in other technologies or industries, but it’s up to the pioneers to find those connections and help us formulate solutions and standards that will make responsive design the best it can possibly be. We need to keep experimenting and communicating, particularly in the area of design, as good user experiences are the true sign of whether our products are a success.",2012,Laura Kalbag,laurakalbag,2012-12-12T00:00:00+00:00,https://24ways.org/2012/design-systems/,design 89,"Direction, Distance and Destinations","With all these new smartphones in the hands of lost and confused owners, we need a better way to represent distances and directions to destinations. The immediate examples that jump to mind are augmented reality apps which let you see another world through your phone’s camera. While this is interesting, there is a simpler way: letting people know how far away they are and if they are getting warmer or colder. In the app world, you can easily tap into the phone’s array of sensors such as the GPS and compass, but what people rarely know is that you can do the same with HTML. The native versus web app debate will never subside, but at least we can show you how to replicate some of the functionality progressively in HTML and JavaScript. In this tutorial, we’ll walk through how to create a simple webpage listing distances and directions of a few popular locations around the world. We’ll use JavaScript to access the device’s geolocation API and also attempt to access the compass to get a heading. Both of these APIs are documented, to be included in the W3C geolocation API specification, and can be used on both desktop and mobile devices today. To get started, we need a list of a few locations around the world. I have chosen the highest mountain peak on each continent so you can see a diverse set of distances and directions. Mountain °Latitude °Longitude Kilimanjaro -3.075833 37.353333 Vinson Massif -78.525483 -85.617147 Puncak Jaya -4.078889 137.158333 Everest 27.988056 86.925278 Elbrus 43.355 42.439167 Mount McKinley 63.0695 -151.0074 Aconcagua -32.653431 -70.011083 Source: Wikipedia We can put those into an HTML list to be styled and accessed by JavaScript to create some distance and directions calculations. The next thing we need to do is check to see if the browser and operating system have geolocation support. To do this we test to see if the function is available or not using a single JavaScript if statement. The if statement will be false if geolocation support is not present, and then it is up to you to do something else instead as a fallback. For this example, we’ll do nothing since our page should work as is and only get progressively better if more functionality is available. The if statement will be true if there is support and therefore will continue inside the curly brackets to try to get the location. This should prompt the reader to accept or deny the request to get their location. If they say no, the second function callback is processed, in this case a function called geo_error; whereas if the location is available, it fires the geo_success function callback. The function geo_error(){ } isn’t that exciting. You can handle this in any way you see fit. The success function is more interesting. We get a position object passed into the function which contains a series of exciting attributes, namely the latitude and longitude of the device’s current location. function geo_success(position){ gLat = position.coords.latitude; gLon = position.coords.longitude; } Now, in the variables gLat and gLon we have the user’s approximate geographical position. We can use this information to start to calculate some distances between where they are and all the destinations. At the time of writing, you can also get position.coords.heading, but on Windows and iOS devices this returned NULL. In the future, if and when this is supported, this is also where you can easily grab the compass information. Inside the geo_success function, we want to loop through the HTML to get all of the mountain peaks’ latitudes and longitudes and compute the distance. ... $('.geo').each(function(){ // Get the lat/lon from the HTML tLat = $(this).find('.lat').html() tLon = $(this).find('.lon').html() // compute the distances between the current location and this points location dist = distance(tLat,tLon,gLat,gLon); // set the return values into something useful d = parseInt(dist[0]*10)/10; a = parseFloat(dist[1]); // display the value in the HTML and style the arrow $(this).find('.distance').html(d+' km away'); $(this).find('.direction').css('-webkit-transform','rotate(-' + a + 'deg)'); // store the arc for later use if compass is available $(this).attr('data-arc',a); } In the variable d we have the distance between the current location and the location of the mountain peak based on the Haversine Formula. The variable a is the arc, which has a value from 0 to 359.99. This will be useful later if we have compass support. Given these two values we have a distance and a heading to style the HTML. The next thing we want to do is check to see if the device has a compass and then get access to the the current heading. As we’ll see, there are several ways to do this, some of which work on certain devices but not others. The W3C geolocation spec says that, along with the coordinates, there are several other attributes: accuracy; altitude; and heading. Heading is the direction to true north, which is different than magnetic north! WebKit and Windows return NULL for the heading value, but WebKit has an experimental method to fetch the heading. If you get into accessing these sensors, you’ll have to try to catch a few of these methods to finally get a value. Assuming you do, we can move on to the more interesting display opportunities. In an ideal world, this would succeed and set a variable we’ll call compassHeading to get a value between 0 and 359.99 degrees. Now we know which direction north is, we also know the direction relative to north of the path to our destination, so we can can subtract the two values to get an arrow to display on the screen. But we’re not finished yet: we also need to get the device’s orientation (landscape or portrait) and subtract the correct amount from the angle for the arrow. Once we have a value, we can use CSS to rotate the arrow the correct number of degrees. -webkit-transform: rotate(-180deg) Not all devices support a standard way to access compass information, so in the meantime we need to use a work around. On iOS, you can use the experimental event method e.webkitCompassHeading. We want the compass to update in real time as the device is moved around, so we’ll put this inside an event listener. window.addEventListener('deviceorientation', function(e) { // Loop through all the locations on the page $('.geo').each(function(){ // get the arc value from north we computed and stored earlier destination_arc = parseInt($(this).attr('data-arc')) compassHeading = e.webkitCompassHeading + window.orientation + destination_arc; // find the arrow element and rotate it accordingly $(this).find('.direction').css('-webkit-transform','rotate(-' + compassHeading + 'deg)'); } } As the device is rotated, the compass arrow will constantly be updated. If you want to see an example, you can have a look at this page which shows the distances to all the peaks on each continent. With progressive enhancement, we slowly layer on additional functionality as we go. The reader will first see the list of locations with a latitude and longitude. If the device is capable and permissions allow, it will then compute the distance. If a compass is available, with the correct permissions it will then add the final layer which is direction. You should consider this code a stub for your projects. If you are making a hyperlocal webpage with restaurant locations, for example, then consider adding these features. Knowing not only how far away a place is, but also the direction can be hugely important, and since the compass is always active, it acts as a guide to the location. Future developments Improvements to this could include setting a timer and recalling the navigator.geolocation.getCurrentPosition() function and updating the distances. I chose very distant mountains so kilometres made sense, but you can divide again by 1,000 to convert to metres if you are dealing with much nearer places. Walking or driving would change the distances so the ability to refresh would be important. It is outside the scope of this article, but if you manage to get this HTML to work offline, then you can make a nice web app which sits on your devices’ homescreens and works even without an internet connection. This could be ideal for travellers in an unknown city looking for your destination. Just with offline storage, base64 encoding and data URIs, it is possible to embed plenty of design and functionality into a small offline webpage. Now you know how to use JavaScript to look up a destination’s location and figure out the distance and direction – never get lost again.",2012,Brian Suda,briansuda,2012-12-19T00:00:00+00:00,https://24ways.org/2012/direction-distance-and-destinations/,code 95,Giving Content Priority with CSS3 Grid Layout,"Browser support for many of the modules that are part of CSS3 have enabled us to use CSS for many of the things we used to have to use images for. The rise of mobile browsers and the concept of responsive web design has given us a whole new way of looking at design for the web. However, when it comes to layout, we haven’t moved very far at all. We have talked for years about separating our content and source order from the presentation of that content, yet most of us have had to make decisions on source order in order to get a certain visual layout. Owing to some interesting specifications making their way through the W3C process at the moment, though, there is hope of change on the horizon. In this article I’m going to look at one CSS module, the CSS3 grid layout module, that enables us to define a grid and place elements on to it. This article comprises a practical demonstration of the basics of grid layout, and also a discussion of one way in which we can start thinking of content in a more adaptive way. Before we get started, it is important to note that, at the time of writing, these examples work only in Internet Explorer 10. CSS3 grid layout is a module created by Microsoft, and implemented using the -ms prefix in IE10. My examples will all use the -ms prefix, and not include other prefixes simply because this is such an early stage specification, and by the time there are implementations in other browsers there may be inconsistencies. The implementation I describe today may well change, but is also there for your feedback. If you don’t have access to IE10, then one way to view and test these examples is by signing up for an account with Browserstack – the free trial would give you time to have a look. I have also included screenshots of all relevant stages in creating the examples. What is CSS3 grid layout? CSS3 grid layout aims to let developers divide up a design into a grid and place content on to that grid. Rather than trying to fabricate a grid from floats, you can declare an actual grid on a container element and then use that to position the elements inside. Most importantly, the source order of those elements does not matter. Declaring a grid We declare a grid using a new value for the display property: display: grid. As we are using the IE10 implementation here, we need to prefix that value: display: -ms-grid;. Once we have declared our grid, we set up the columns and rows using the grid-columns and grid-rows properties. .wrapper { display: -ms-grid; -ms-grid-columns: 200px 20px auto 20px 200px; -ms-grid-rows: auto 1fr; } In the above example, I have declared a grid on the .wrapper element. I have used the grid-columns property to create a grid with a 200 pixel-wide column, a 20 pixel gutter, a flexible width auto column that will stretch to fill the available space, another 20 pixel-wide gutter and a final 200 pixel sidebar: a flexible width layout with two fixed width sidebars. Using the grid-rows property I have created two rows: the first is set to auto so it will stretch to fill whatever I put into it; the second row is set to 1fr, a new value used in grids that means one fraction unit. In this case, one fraction unit of the available space, effectively whatever space is left. Positioning items on the grid Now I have a simple grid, I can pop items on to it. If I have a
with a class of .main that I want to place into the second row, and the flexible column set to auto I would use the following CSS: .content { -ms-grid-column: 3; -ms-grid-row: 2; -ms-grid-row-span: 1; } If you are old-school, you may already have realised that we are essentially creating an HTML table-like layout structure using CSS. I found the concept of a table the most helpful way to think about the grid layout module when trying to work out how to place elements. Creating grid systems As soon as I started to play with CSS3 grid layout, I wanted to see if I could use it to replicate a flexible grid system like this fluid 16-column 960 grid system. I started out by defining a grid on my wrapper element, using fractions to make this grid fluid. .wrapper { width: 90%; margin: 0 auto 0 auto; display: -ms-grid; -ms-grid-columns: 1fr (4.25fr 1fr)[16]; -ms-grid-rows: (auto 20px)[24]; } Like the 960 grid system I was using as an example, my grid starts with a gutter, followed by the first actual column, plus another gutter repeated sixteen times. What this means is that if I want to span two columns, as far as the grid layout module is concerned that is actually three columns: two wide columns, plus one gutter. So this needs to be accounted for when positioning items. I created a CSS class for each positioning option: column position; rows position; and column span. For example: .grid1 {-ms-grid-column: 2;} /* applying this class positions an item in the first column (the gutter is column 1) */ .grid2 {-ms-grid-column: 4;} /* 2nd column - gutter|column 1|gutter */ .grid3 {-ms-grid-column: 6;} /* 3rd column - gutter|column 1|gutter|column2|gutter */ .row1 {-ms-grid-row:1;} .row2 {-ms-grid-row:3;} .row3 {-ms-grid-row:5;} .colspan1 {-ms-grid-column-span:1;} .colspan2 {-ms-grid-column-span:3;} .colspan3 {-ms-grid-column-span:5;} I could then add multiple classes to each element to set the position on on the grid. This then gives me a replica of the fluid grid using CSS3 grid layout. To see this working fire up IE10 and view Example 1. This works, but… This worked, but isn’t ideal. I considered not showing this stage of my experiment – however, I think it clearly shows how the grid layout module works and is a useful starting point. That said, it’s not an approach I would take in production. First, we have to add classes to our markup that tie an element to a position on the grid. This might not be too much of a problem if we are always going to maintain the sixteen-column grid, though, as I will show you that the real power of the grid layout module appears once you start to redefine the grid, using different grids based on media queries. If you drop to a six-column layout for small screens, positioning items into column 16 makes no sense any more. Calculating grid position using LESS As we’ve seen, if you want to use a grid with main columns and gutters, you have to take into account the spacing between columns as well as the actual columns. This means we have to do some calculating every time we place an item on the grid. In my example above I got around this by creating a CSS class for each position, allowing me to think in sixteen rather than thirty-two columns. But by using a CSS preprocessor, I can avoid using all the classes yet still think in main columns. I’m using LESS for my example. My simple grid framework consists of one simple mixin. .position(@column,@row,@colspan,@rowspan) { -ms-grid-column: @column*2; -ms-grid-row: @row*2-1; -ms-grid-column-span: @colspan*2-1; -ms-grid-row-span: @rowspan*2-1; } My mixin takes four parameters: column; row; colspan; and rowspan. So if I wanted to place an item on column four, row three, spanning two columns and one row, I would write the following CSS: .box { .position(4,3,2,1); } The mixin would return: .box { -ms-grid-column: 8; -ms-grid-row: 5; -ms-grid-column-span: 3; -ms-grid-row-span: 1; } This saves me some typing and some maths. I could also add other prefixed values into my mixin as other browsers started to add support. We can see this in action creating a new grid. Instead of adding multiple classes to each element, I can add one class; that class uses the mixin to create the position. I have also played around with row spans using my mixin and you can see we end up with a quite complicated arrangement of boxes. Have a look at example two in IE10. I’ve used the JavaScript LESS parser so that you can view the actual LESS that I use. Note that I have needed to escape the -ms prefixed properties with ~"""" to get LESS to accept them. This is looking better. I don’t have direct positioning information on each element in the markup, just a class name – I’ve used grid(x), but it could be something far more semantic. We can now take the example a step further and redefine the grid based on screen width. Media queries and the grid This example uses exactly the same markup as the previous example. However, we are now using media queries to detect screen width and redefine the grid using a different number of columns depending on that width. I start out with a six-column grid, defining that on .wrapper, then setting where the different items sit on this grid: .wrapper { width: 90%; margin: 0 auto 0 auto; display: ~""-ms-grid""; /* escaped for the LESS parser */ -ms-grid-columns: ~""1fr (4.25fr 1fr)[6]""; /* escaped for the LESS parser */ -ms-grid-rows: ~""(auto 20px)[40]""; /* escaped for the LESS parser */ } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... see example for all declarations ... */ Using media queries, I redefine the grid to nine columns when we hit a minimum width of 700 pixels. @media only screen and (min-width: 700px) { .wrapper { -ms-grid-columns: ~""1fr (4.25fr 1fr)[9]""; -ms-grid-rows: ~""(auto 20px)[50]""; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } Finally, we redefine the grid for 960 pixels, back to the sixteen-column grid we started out with. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~"" 1fr (4.25fr 1fr)[16]""; -ms-grid-rows:~"" (auto 20px)[24]""; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } If you view example three in Internet Explorer 10 you can see how the items reflow to fit the window size. You can also see, looking at the final set of blocks, that source order doesn’t matter. You can pick up a block from anywhere and place it in any position on the grid. Laying out a simple website So far, like a toddler on Christmas Day, we’ve been playing with boxes rather than thinking about what might be in them. So let’s take a quick look at a more realistic layout, in order to see why the CSS3 grid layout module can be really useful. At this time of year, I am very excited to get out of storage my collection of odd nativity sets, prompting my family to suggest I might want to open a museum. Should I ever do so, I’ll need a website, and here is an example layout. As I am using CSS3 grid layout, I can order my source in a logical manner. In this example my document is as follows, though these elements could be in any order I please:
...
...
...
...
For wide viewports I can use grid layout to create a sidebar, with the important information about opening times on the top righ,t with the ads displayed below it. This creates the layout shown in the screenshot above. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~"" 1fr (4.25fr 1fr)[16]""; -ms-grid-rows:~"" (auto 20px)[24]""; } .welcome { .position(1,1,12,1); padding: 0 5% 0 0; } .info { .position(13,1,4,1); border: 0; padding:0; } .main { .position(1,2,12,1); padding: 0 5% 0 0; } .ads { .position(13,2,4,1); display: block; margin-left: 0; } } In a floated layout, a sidebar like this often ends up being placed under the main content at smaller screen widths. For my situation this is less than ideal. I want the important information about opening times to end up above the main article, and to push the ads below it. With grid layout I can easily achieve this at the smallest width .info ends up in row two and .ads in row five with the article between. .wrapper { display: ~""-ms-grid""; -ms-grid-columns: ~""1fr (4.25fr 1fr)[4]""; -ms-grid-rows: ~""(auto 20px)[40]""; } .welcome { .position(1,1,4,1); } .info { .position(1,2,4,1); border: 4px solid #fff; padding: 10px; } .content { .position(1,3,4,5); } .main { .position(1,3,4,1); } .ads { .position(1,4,4,1); } Finally, as an extra tweak I add in a breakpoint at 600 pixels and nest a second grid on the ads area, arranging those three images into a row when they sit below the article at a screen width wider than the very narrow mobile width but still too narrow to support a sidebar. @media only screen and (min-width: 600px) { .ads { display: ~""-ms-grid""; -ms-grid-columns: ~""20px 1fr 20px 1fr 20px 1fr""; -ms-grid-rows: ~""1fr""; margin-left: -20px; } .ad:nth-child(1) { .position(1,1,1,1); } .ad:nth-child(2) { .position(2,1,1,1); } .ad:nth-child(3) { .position(3,1,1,1); } } View example four in Internet Explorer 10. This is a very simple example to show how we can use CSS grid layout without needing to add a lot of classes to our document. It also demonstrates how we can mainpulate the content depending on the context in which the user is viewing it. Layout, source order and the idea of content priority CSS3 grid layout isn’t the only module that starts to move us away from the issue of visual layout being linked to source order. However, with good support in Internet Explorer 10, it is a nice way to start looking at how this might work. If you look at the grid layout module as something to be used in conjunction with the flexible box layout module and the very interesting CSS regions and exclusions specifications, we have, tantalizingly on the horizon, a powerful set of tools for layout. I am particularly keen on the potential separation of source order from layout as it dovetails rather neatly into something I spend a lot of time thinking about. As a CMS developer, working on larger scale projects as well as our CMS product Perch, I am interested in how we better enable content editors to create content for the web. In particular, I search for better ways to help them create adaptive content; content that will work in a variety of contexts rather than being tied to one representation of that content. If the concept of adaptive content is new to you, then Karen McGrane’s presentation Adapting Ourselves to Adaptive Content is the place to start. Karen talks about needing to think of content as chunks, that might be used in many different places, displayed differently depending on context. I absolutely agree with Karen’s approach to content. We have always attempted to move content editors away from thinking about creating a page and previewing it on the desktop. However at some point content does need to be published as a page, or a collection of content if you prefer, and bits of that content have priority. Particularly in a small screen context, content gets linearized, we can only show so much at a time, and we need to make sure important content rises to the top. In the case of my example, I wanted to ensure that the address information was clearly visible without scrolling around too much. Dropping it with the entire sidebar to the bottom of the page would not have been so helpful, though neither would moving the whole sidebar to the top of the screen so a visitor had to scroll past advertising to get to the article. If our layout is linked to our source order, then enabling the content editor to make decisions about priority is really hard. Only a system that can do some regeneration of the source order on the server-side – perhaps by way of multiple templates – can allow those kinds of decisions to be made. For larger systems this might be a possibility; for smaller ones, or when using an off-the-shelf CMS, it is less likely to be. Fortunately, any system that allows some form of custom field type can be used to pop a class on to an element, and with CSS grid layout that is all that is needed to be able to target that element and drop it into the right place when the content is viewed, be that on a desktop or a mobile device. This approach can move us away from forcing editors to think visually. At the moment, I might have to explain to an editor that if a certain piece of content needs to come first when viewed on a mobile device, it needs to be placed in the sidebar area, tying it to a particular layout and design. I have to do this because we have to enforce fairly strict rules around source order to make the mechanics of the responsive design work. If I can instead advise an editor to flag important content as high priority in the CMS, then I can make decisions elsewhere as to how that is displayed, and we can maintain the visual hierarchy across all the different ways content might be rendered. Why frustrate ourselves with specifications we can’t yet use in production? The CSS3 grid layout specification is listed under the Exploring section of the list of current work of the CSS Working Group. While discussing a module at this stage might seem a bit pointless if we can’t use it in production work, there is a very real reason for doing so. If those of us who will ultimately be developing sites with these tools find out about them early enough, then we can start to give our feedback to the people responsible for the specification. There is information on the same page about how to get involved with the disussions. So, if you have a bit of time this holiday season, why not have a play with the CSS3 grid layout module? I have outlined here some of my thoughts on how grid layout and other modules that separate layout from source order can be used in the work that I do. Likewise, wherever in the stack you work, playing with and thinking about new specifications means you can think about how you would use them to enhance your work. Spot a problem? Think that a change to the specification would improve things for a specific use case? Then you have something you could post to www-style to add to the discussion around this module. All the examples are on CodePen so feel free to play around and fork them.",2012,Rachel Andrew,rachelandrew,2012-12-18T00:00:00+00:00,https://24ways.org/2012/css3-grid-layout/,code 80,HTML5 Video Bumpers,"Video is a bigger part of the web experience than ever before. With native browser support for HTML5 video elements freeing us from the tyranny of plugins, and the availability of faster internet connections to the workplace, home and mobile networks, it’s now pretty straightforward to publish video in a way that can be consumed in all sorts of ways on all sorts of different web devices. I recently worked on a project where the client had shot some dedicated video shorts to publish on their site. They also had some five-second motion graphics produced to top and tail the videos with context and branding. This pretty common requirement is a great idea on the web, where a user might land at your video having followed a link and be viewing a page without much context. Known as bumpers, these short introduction clips help brand a video and make it look a lot more professional. Adding bumpers to a video The simplest way to add bumpers to a video would be to edit them on to the start and end of the video file itself. Cooking the bumpers into the video file is easy, but should you ever want to update them it can become a real headache. If the branding needs updating, for example, you’d need to re-edit and re-encode all your videos. Not a fun task. What if the bumpers could be added dynamically? That would enable you to use the same bumper for multiple videos (decreasing download time for users who might watch more than one) and to update the bumpers whenever you wanted. You could change them seasonally, update them for special promotions, run different advertising slots, perform multivariate testing, or even target different bumpers to different users. The trade-off, of course, is that if you dynamically add your bumpers, there’s a chance that a user in a given circumstance might not see the bumper. For example, if the main video feature was uploaded to YouTube, you’d have no way to control the playback. As always, you need to weigh up the pros and cons and make your choice. HTML5 bumpers If you wanted to dynamically add bumpers to your HTML5 video, how would you go about it? That was the question I found myself needing to answer for this particular client project. My initial thought was to treat it just like an image slideshow. If I were building a slideshow that moved between images, I’d use CSS absolute positioning with z-index to stack the images up on top of each other in a pile, with the first image on top. To transition to the second image, I’d use JavaScript to fade the top image out, revealing the second image beneath it. Now that video is just a native object in the DOM, just like an image, why not do the same? Stack the videos up with the opening bumper on top, listen for the video’s onended event, and fade it out to reveal the main feature behind. Good idea, right? Wrong Remember that this is the web. It’s never going to be that easy. The problem here is that many non-desktop devices use native, dedicated video players. Think about watching a video on a mobile phone – when you play the video, the phone often goes full-screen in its native player, leaving the web page behind. There’s no opportunity to fade or switch z-index, as the video isn’t being viewed in the page. Your page is left powerless. Powerless! So what can we do? What can we control? Those of us with particularly long memories might recall a time before CSS, when we’d have to use JavaScript to perform image rollovers. As CSS background images weren’t a practical reality, we would use lots of elements, and perform a rollover by modifying the src attribute of the image. Turns out, this old trick of modifying the source can help us out with video, too. In most cases, modifying the src attribute of a