home / 24ways

24ways

Custom SQL query returning 101 rows

Query parameters

rowidtitlecontentsyearauthorauthor_slugpublishedurltopic
22 The Responsive Hover Paradigm CSS transitions and animations provide web designers with a whole slew of tools to spruce up our designs. Move over ActionScript tweens! The techniques we can now implement with CSS are reminiscent of Flash-based adventures from the pages of web history. Pairing CSS enhancements with our :hover pseudo-class allows us to add interesting events to our websites. We have a ton of power at our fingertips. However, with this power, we each have to ask ourselves: just because I can do something, should I? Why bother? We hear a lot of mantras in the web community. Some proclaim the importance of content; some encourage methods like mobile first to support content; and others warn of the overhead and speed impact of decorative flourishes and visual images. I agree, one hundred percent. At the same time, I believe that content can reign king and still provide a beautiful design with compelling interactions and acceptable performance impacts. Maybe, just maybe, we can even have a little bit of fun when crafting these systems! Yes, a site with pure HTML content and no CSS will load very fast on your mobile phone, but it leaves a lot to be desired. If you went to your local library and every book looked the same, how would you know which one to borrow? Imagine if every book was printed on the same paper stock with the same cover page in the same type size set at a legible point value… how would you know if you were going to purchase a cookbook about wild game or a young adult story about teens fighting to the death? For certain audiences, seeing a site with hip, lively hovers sure beats a stale website concept. I’ve worked on many higher education sites, and setting the interactive options is often a very important factor in engaging potential students, alumni, and donors. The same can go for e-commerce sites: enticing your audience with surprise and delight factors can be the difference between a successful and a lost sale. Knowing your content and audience can help you decide if an intriguing experience is appropriate for your site; if it is, then hover responses can be a real asset. Why hover? We have all these capabilities with CSS properties to create the aforementioned fun interactions, and it would be quite easy to fall back into some old patterns and animation abuse. The world of Flash intros and skip links could be recreated with CSS keyframes. However, I don’t think any of us want to go the route of forcing users into unwanted exchanges and road blocking content. What’s great about utilizing hover to pair with CSS powered actions is that it’s user initiated. It’s a well-established expectation that when a user mouses over an object, something changes. If we can identify that something as a link, then we will expect something to change as we move our mouse over it. By waiting to trigger a CSS-based response until a user chooses to engage with a target makes for a more polished experience (as opposed to barraging our screens with animations all willy-nilly). This makes it the perfect opportunity to add some unique spunk. What about mobile, touch, and responsive? So, you’re on board with this so far, but what about mobile and touch devices? Sure, some devices like the Samsung Galaxy S4 have some hovering capabilities, but certainly most do not. Beyond mobile devices, we also have to worry about desktops with touch capabilities. It’s super difficult to detect if a user is currently using touch or hover. One option we have is to design strictly for touch only and send hover enhancements to the graveyard. However, being that I’m all “fuck yeah hovers!,” I like to explore all options. So, let’s examine four different types of hover patterns and see how they can translate to our touch devices. 1. The essential text hover Changing text color on hover is something we’ve done for a while and it has helped aid in identifying links. To maintain the best accessibility we can achieve, it helps to have a different visual indicator on the default :link state, such as an underline. By making sure all text links have an underline, we won’t have to rely on visual changes during hover to make sure touch device users know that it is a link. For hover-enabled devices, we can add a basic color transition. Doing so creates a nice fade, which makes the change on hover less jarring. Kinda like smooth jazz. The code* to achieve this is quite simple: a { color: #6dd4b1; transition: color 0.25s linear; } a:hover, a:focus { color: #357099; } Browser prefixes are omitted You can see in the final result that, for both touch and hover, everyone wins: See the Pen Most Basic Link Transition by Jenn Lukas (@Jenn) on CodePen 2. Visual background wizardry and animated hovers We can take this a step further by again making changes to our aesthetic on hover, but not making any content changes. Altering image hovers for fun and personality can separate your site from others; that personality is important and can enhance our content. Let’s look at a few sites that do this really well. Scroll down to the judges section of CSS Off and check out the illustrations of the judges. On hover, the illustration fades into a photo of the judge. This provides a realistic alternative to the drawing. Users without the hover can click into the detail page, where they can see the full color picture and learn more about the judges; the information is still available through a different pathway. Going back to the higher education field, let’s visit Delaware Valley College. The school had recently gone through a rebranding that included loop icons as a symbol to connect ideas. These icons are brought into the website on hover of the slideshow arrows (WebKit browsers). The hover reveals a loop animation, tying in overall themes and adding some extra pizzazz that makes me think, “This is a hip place that feels current.” For visitors who can’t access the hover effect, the default arrow state clearly represents a clickable link, and there is swipe functionality on mobile devices to boot. DIY.org’s Frontend Dev page has a bunch of enjoyable hover actions happening, featuring scaling transforms and looping animations. Nothing new is revealed on hover, so touch devices won’t miss anything, but it intrigues the user who is visiting a site about front-end dev doing cool front-end things. It backs up its claim of front-end knowledge by adding this enhancement. The old Cowork Chicago (now redirecting) had a great example, captured here: Coop: Chicago Coworking from Jenn Lukas on Vimeo. The code for the Join areas is quite simple: .join-buttons .daily, .join-buttons .monthly { height: 260px; z-index: 0; margin-top: 30px; transition: height .2s linear,margin .2s linear; } .join-buttons .daily:hover, .join-buttons .monthly:hover { height: 280px; margin-top: 20px; } li.button:hover { z-index: 20; } The slight rotation on the photos, and the change of color and size of the rate options on hover, add to the fun factor. The site attempts to advertise the co-working space by letting bits of their charisma show through with these transitions. They don’t hit the user over the head with animations, but provide a nice addition to make sure visitors know it’s a welcoming place to work. Some text is added on the hover, but the text isn’t essential to determine where the link goes. 3. Image block hovers There have been more designs popping up with large image blocks acting as extensive hit area links to subsequent pages. On hover of these links, text is revealed, letting the user know where the link destination goes. See the Pen Transitioning Max Height by Jenn Lukas (@Jenn) on CodePen This type of link is tough for users on touch as the image might not provide enough context to reveal its target. If you weren’t aware of what my illustrated avatar from 2007 looked like (or even if you did), then how would you know that this is a link to my Twitter page? Instead, if we provide enough context — such as the @jennlukas handle — you could assume the destination. Users who receive the hover can also see the Twitter bio. It won’t break the experience for users that can’t hover, but it will provide a nice interaction and some more information for those that can. See the Pen Transitioning Max Height by Jenn Lukas (@Jenn) on CodePen The Esquire site follows this same pattern, in which the title of the story is shown and the subheading is revealed on hover. Dining at Altitude took the opposite approach, where all text is shown by default and, on hover, you can see more of the image that the text sits atop. This is a nice technique to follow. For touch users, following the link will allow them to see more of the image detail that was revealed on hover. 4. Drop-down navigation menu hovers Main navigation options that rely on hover have come up as a problem for touch. One way to address this is to be sure your top level items are all functional links to somewhere, and not blank anchors to trigger a submenu drop-down. This ensures that, even without the hover-triggered menu, users can still navigate to those top-level pages. From there, they should be able to access the tertiary pages shown in the drop-down. Following this arrangement, drop-down menus act as a quick shortcut and aren’t necessary to the navigational structure. If the top navigation items are your most visited pages, this execution won’t hinder your visitors. If the information within the menu is vital, such as a lone account menu, another option is to show drop-down menus on click instead of hover. This pattern will allow both mouse and touch users to access the drop-downs. Why can’t we just detect hover? This is a really tricky thing to do. Internet Explorer 10 on Windows 8 uses the aria-haspopup attribute to simulate hover on touch devices, but usually our audience stretches beyond that group. There’s been discussion around using Modernizr, but false positives have come with that. A W3C draft for Media Queries Level 4 includes a hover feature, but it’s not supported yet. Since some devices can hover and touch, should you rely on hover effects for those? Arguments have come up that users can be browsing your site with a mouse and then decide to switch to touch, or vice versa. That might be a large concern for you, or it might be an edge case that isn’t vital to your site’s success. For one site, I used mousemove and touchstart JavaScript events in order to detect if a visitor starts to browse the site with a mouse. The design initiates for touch users, showing all text on load, but as soon as a mouse movement occurs, the text becomes hidden and is then revealed on hover. See the Pen Detect Touch devices with mousemove and touchstart by Jenn Lukas (@Jenn) on CodePen One downside to this approach is that the text is viewable until a mouse enters the document, but if the elements are further down the page it might not be noticed. A second downside is if a user on a touch- and hover-enabled device starts browsing with the mouse and then switches back to touch, the hover-centric styles will remain until a new page load. These were acceptable scenarios in the project I worked on, but might not be for every project. Can we give our visitors a choice? I’ve been thinking about how we can combat the concern of not knowing if our customers are using touch or a mouse, not to mention keyboard or Wacom tablets or Minority Report screens. We can cover keyboards with our friend :focus, but that still doesn’t solve our other dilemmas. Remember when we couldn’t rely on browsers to zoom text and we had to use those small A, medium A, big A [AAA] buttons? On selection of one of those options, a different style sheet would load with small, medium, or large text sizes to satisfy our user’s request. We could even set cookies to remember their font choices. What if we offered a similar solution, a hover/touch switcher, for our new predicament? See the Pen cwuJf by Jenn Lukas (@Jenn) on CodePen We could add this switcher to our design. Maybe add it to the header on smaller screens and the footer on larger screens to play the odds. Then be sure to deliver the appropriate touch- or hover-optimized adventure for our guests. How about adding View options in the areas where we’re hiding content until hover? Looking at Delta Cycle, there’s logic in place to switch layouts on some mobile devices. On desktops we can see the layout shows the product and price by default, and the name of the item and an Add to cart button on hover. If you want to keep this hover, but also worry that touch users can’t access it — or even if you are concerned that people might want to view it with more details up front — we could add another view switcher. See the Pen List/Grid Views for Hover or Touch by Jenn Lukas (@Jenn) on CodePen Similar to the list versus grid view we often see in operating systems, a choice here could cover all of our bases. Conclusion There is no one-size-fits-all solution when it comes to hover patterns. Design for your content. If you are providing important information about driving directions or healthcare, you might want to err on the side of designing for touch only. If you are behind an educational site and trying to entice more traffic and sign-ups, or a more immersive e-commerce site selling pies, then hover activity can help support your content and engage your visitors without being a detriment. While content can be our top priority, let’s not forget that our designs and interactions, hovers included, can have a great positive impact on how visitors experience our site. Hover wisely, friends. 2013 Jenn Lukas jennlukas 2013-12-12T00:00:00+00:00 https://24ways.org/2013/the-responsive-hover-paradigm/  
29 What It Takes to Build a Website In 1994 we lost Kurt Cobain and got the world wide web as a weird consolation prize. In the years that followed, if you’d asked me if I knew how to build a website I’d have said yes, I know HTML, so I know how to build a website. If you’d then asked me what it takes to build a website, I’d have had to admit that HTML would hardly feature. Among the design nerdery and dev geekery it’s easy to think that the nuts and bolts of building a page just need to be multiplied up and Ta-da! There’s your website. That can certainly be true with weekend projects and hackery for fun. It works for throwing something together on GitHub or experimenting with ideas on your personal site. But what about working professionally on client projects? The web is important, so we need to build it right. It’s 2015 – your job involves people paying you money for building websites. What does it take to build a website and to do it right? What practices should we adopt to make really great, successful and professional web projects in 2015? I put that question to some friends and 24 ways authors to see what they thought. Getting the tech right Inevitably, it all starts with the technology. We work in a technical medium, after all. From Notepad and WinFTP through to continuous integration and deployment – how do you build sites? Create a stable development environment There’s little more likely to send a web developer into a wild panic and a client into a wild rage than making a new site live and things just not working. That’s why it’s important to have realistic development and staging environments that mimic the live server as closely as possible. Are you in the habit of developing new sites right on the client’s server? Or maybe in a subfolder on your local machine? It’s time to reconsider. Charlie Perrins writes: Don’t work on a live server – this feels like one of those gear-changing moments for a developer’s growth. Build something that works just as well locally on your own machine as it does on a live server, and capture the differences in the code between the local and live version in a single config file. Ultimately, if you can get all the differences between environments down to a config level then you’ll be in a really good position to automate the deployment process at some point in the future. Anything that creates a significant difference between the development and the live environments has the potential to cause problems you won’t know about until the site goes live – and at that point the problems are very public and very embarrassing, not to mention unprofessional. A reasonable solution is to use a tool like MAMP PRO which enables you to set up an individual local website for each project you work on. Importantly, individual sites give you both consistency of paths between development and live, but also the ability to configure server options (like PHP versions and configuration, for example) to match the live site. Better yet is to use a virtual machine, managed with a tool such as Vagrant. If you’re interested in learning more about that, we have an article on that subject later in the series. Use source control Trent Walton writes: We use source control, and it’s become the centerpiece for how we handle collaboration, enhancements, and issues. It drives our process. I’m hoping by now that you’re either using source control for all your work, or feeling a nagging guilt that you should be. Be it Git, Mercurial, Subversion (name your poison), a revision control system enables you to keep track of changes, revert anything that breaks, and keep rolling backups of your project. The benefits only start there, and Charlie Perrins recommends using source control “not just as a personal backup of your code, but as a way to play nicely with other developers.“ Noting the benefits when collaborating with other developers, he adds: Graduating from being the sole architect of your codebase to contributing to a shared codebase is a huge leap for a developer. Perhaps a practical way for people who tend to work on their own to do that would be to submit a pull request or a patch to an open source project or plugin.” Richard Rutter of Clearleft sees clear advantages for the client, too. He recommends using source control “preferably in some sort of collaborative environment that you can open up or hand over to the client” – a feature found with hosted services such as GitHub. If you’d like to hone your Git skills, Emma Jane Westby wrote Git for Grown-ups in last year’s 24 ways. Don’t repeat, automate! Tim Kadlec is a big proponent of automating your build process: I’ve been hammering that home to every client I’ve had this year. It’s amazing how many companies don’t really have a formal build/deployment process in place. So many issues on the web (performance, accessibility, etc.) can be greatly improved just by having a layer of automation involved. For example, graphic editing software spits out ridiculously bloated images. Very frequently, that’s what ends up getting put on a site. If you have a build process, you can have the compression automated and start seeing immediate gains for no effort. On a recent project, they were able to shave around 1.5MB from their site weight simply by automating compression. Once you have your code in source control, some of that automation can be made easier. Brian Suda writes: We have a few bash scripts that run on git commit: they compile the less, jslint and remove white-space, basically the 3 Cs, Compress, Concatenate, Combine. This is now part of our workflow without even realising it. One great way to get started with a build process is to use a tool like Grunt, and a great way to get started with Grunt is to read Chris Coyier’s Grunt for People Who Think Things Like Grunt are Weird and Hard. Tim reinforces: Issues like [image compression] — or simple accessibility issues like alt tags on images — should never be able to hit a live server. If you can detect it, you can automate it. And if you can automate it, you can free up time for designers and developers to focus on more challenging — and interesting — problems. A clear call to arms to tighten up and formalise development and deployment practices. The less that has to be done manually or is susceptible to change, the less that can go wrong when a site is built and deployed. Any procedures that are automated are no longer dependant on a single person’s knowledge, making it easier to build your team or just cope when someone important is out of the office or leaves. If you’re interested in kicking the FTP habit and automating your site deployments, we have an article later in the series just for you. Build systems, not sites One big theme arising this year was that of building websites as systems, not as individual pages. Brad Frost: For me, teams making websites in 2015 shouldn’t be working on just-another-redesign redesign. People are realizing that in order to make stable, future-friendly, scalable, extensible web experiences they’re going to need to think more systematically. That means crafting deliberate and thoughtful design systems. That means establishing front-end style guides. That means killing the out-dated, siloed, assembly-line waterfall process and getting cross-disciplinary teams working together in meaningful ways. That means treating development as design. That means treating performance as design. That means taking the time out of the day to establish the big picture, rather than aimlessly crawling along quarter by quarter. Designer and developer Jina Bolton also advocates the use of style guides, and recommends making the guide a project deliverable: Consider adding on a style guide/UI library to your project as a deliverable for maintainability and thinking through all UI elements and components. Val Head agrees: “build and maintain a style guide for each project” she wrote. On the subject of approaching a redesign, she added: A UI inventory goes a long way to helping get your head around what a design system needs in the early stages of a redesign project. So what about that old chestnut, responsive web design? Should we be making sites responsive by default? How about mobile first? Richard Rutter: Think mobile first unless you have a very good reason not to. Remember to take the client with you on this principle, otherwise it won’t work as a convincing piece of design. Trent Walton adds: The more you can test and sort of skew your perception for what is typical on the web, the better. 4k displays hooked up to 100Mbps connections can make one extremely unsympathetic. The value of testing with real devices is something Ruth John appreciates. She wrote: I still have my own small device lab at home, even though I work permanently for a well-established company (which has a LOT of devices at its disposal) – it just means I can get a good overview of how things are looking during development. And speaking of systems, Mark Norman Francis recommends the use of measuring tools to aid the design process; “[U]se analytics and make decisions from actual data” he suggests, rather than relying totally on intuition. Tim Kadlec adds a word on performance planning: I think having a performance budget in place should now be a given on any project. We’ve proven pretty conclusively through a hundred and one case studies that performance matters. And over the last year or so, we’ve really seen a lot of great tools emerge to help track and enforce performance budgets. There’s not really a good excuse for not using one any more. It’s clear that in the four years since Ethan Marcotte’s Responsive Web Design article the diversity of screen sizes, network connection speeds and input methods has only increased. New web projects should presume visitors will be using anything from a watch up to a big screen desktop display, and from being offline, through to GPRS, 3G and fast broadband. Will it take more time to design and build for those constraints? Yes, it most likely will. If Internet Explorer is brave enough to ask to be your default browser, you can be brave enough to tell your client they need to build responsively. Working collaboratively A big part of delivering a successful website project is how we work together, both as a design team and a wider project team with the client. Val Head recommends an open line of communication: Keep conversations going. With clients, with teammates. Talking is so important with the way we work now. A good team conversation place, like Slack, is slowly becoming invaluable for me too. Ruth John agrees: We’ve recently opened up our lines of communication by using Slack. It has transformed the way we work. We’re easily more productive and collaborative on projects, as well as making it a lot easier for us all to work remotely (including freelancers). She goes on to point out how tools can be combined to ease team communication without adding further complications: We have a private GitHub organisation (which everyone who works with us is granted access to), which not only holds all our project code but also a team wiki. This has lots of information to get you set up within the team, as well as coding guidelines and best practices and other admin info, like contact numbers/emails for the team. Small-A agile is also the theme of the day, with Mark Norman Francis suggesting an approach of “small iterations with constant feedback around individual features, not spec-it-all-first”. He also encourages you to review as you go, at each stage of the project: Always reflect on what went well and what went badly, and how you can learn from that, even if not Doing Agile™. Ultimately “best practices” should come from learning lessons (both good and bad). Richard Rutter echoes this, warning against working in isolation from the client for too long: Avoid big reveals. Your engagement with the client should be participatory. In business no one likes surprises. This experience rings true for Ruth John who recommends involving real users in the feedback loop, not just the client: We also try and get feedback on what we’re building as soon and as often as we can with our stakeholders/clients and real users. We should also remember that our role is to serve the client’s needs, not just bill them for whatever we can. Brian Suda adds: Don’t sell clients on things they don’t need. We can spout a lot of jargon and scare clients into thinking you are a god. We can do things few can now, but you can’t rip people off because they are unknowledgeable. But do clients know what they’re getting, even when they see it? Trent Walton has an interesting take: We focus on prototypes over image-based comps at all costs, especially when meetings are involved. It’s much easier to assess a prototype, and too often with image-based comps, discussions devolve into how something might feel when actually live, or how a layout could change to fit a given viewport. Val Head also likes to get work into the browser: Sketch design ideas with any software you like, but get to the browser as soon as possible. Beyond your immediate team, Emma Jane Westby has advice for looking further afield: Invest time into building relationships within your (technical) community. You never know when you might be able to lend a hand; or benefit from someone who’s able to lend theirs. And when things don’t go according to plan, Brian Suda has the following advice: If something doesn’t work out, be professional and don’t burn bridges. It will always come back to you. The best work comes from working collaboratively, not just as a team within an agency or department, but with the client and stakeholders too. If doing your job and chucking it over the fence ever worked, it certainly doesn’t fly any more. You can work in isolation, but doing really great work requires collaboration. The business end When you’re building sites professionally, every team member has to think about the business aspects. Estimating time, setting billing rates, and establishing deliverables are all part of the job. In 2008, Andrew Clarke gave us the Contract Killer sample contract we could use to establish a working agreement for a web design project. Richard Rutter agrees that contracts are still an essential part of business: They are there for both parties’ protection. Make sure you know what will happen if you decide you don’t want to work with the client any more (it happens) and, of course, what circumstances mean they can stop taking your services. Having a contract is one thing, but does it adequately protect both you and the client? Emma Jane Westby adds: Find a good IP lawyer/legal counsel. I routinely had an IP lawyer read all of my contracts to find loopholes I wouldn’t have noticed. I didn’t always change the contract, but at least I knew what might come back to bite me. So, you have a contract in place, and know what the project is. Brian Suda recommends keeping track of time and making sure you bill fairly for the hours the project costs you: If I go to a meeting and they are 15 minutes late, the billing clock has already started. They can’t expect me to be in the 1h meeting and not bill for the extra 15–30 minutes they wasted. It goes both ways too. You need to do your best to respect their deadlines and time frame – this is always hard to get right. As ever, it’s good business to do good business. Perhaps we can at last shed the old image of web designers being snowboarding layabouts and demonstrate to clients that we care as much about conducting professional business as they do. Time to review It’s a lot to take in. Some of these ideas and practices will be familiar, others new and yet to be evaluated. The web moves at a fast pace, and we need to be constantly reexamining our tools, techniques and working practices. The most important thing is not to blindly adopt any and all suggestions, but to carefully look at what the benefits might be and decide how they apply to your work. Could you benefit from more formalised development and deployment procedures? Would your design projects run more smoothly and have a longer maintainable life if you approached the solution as a componentised system rather than a series of pages? Are your teams structured in a way that enables the most fluid communication, or are there changes you could make? Are your billing procedures and business agreements serving you and your clients in the best way possible? The new year is a good time to look at your working practices and see what can be improved, and maybe this time next year you’ll look back and think “thank goodness we don’t work like that any more”. 2014 Drew McLellan drewmclellan 2014-12-01T00:00:00+00:00 https://24ways.org/2014/what-it-takes-to-build-a-website/ business
40 Don’t Push Through the Pain In 2004, I lost my web career. In a single day, it was gone. I was in too much pain to use a keyboard, a Wacom tablet (I couldn’t even click the pen), or a trackball. Switching my mouse to use my left (non-dominant) hand only helped a bit; then that hand went, too. I tried all the easy-to-find equipment out there, except for expensive gizmos with foot pedals. I had tingling in my fingers—which, when I was away from the computer, would rhythmically move as if some other being controlled them. I worried about Parkinson’s because the movements were so dramatic. Pen on paper was painful. Finally, I discovered one day that I couldn’t even turn a doorknob. The only highlight was that I couldn’t dust, scrub, or vacuum. We were forced to hire someone to come in once a week for an hour to whip through the house. You can imagine my disappointment. My injuries had gradually slithered into my life without notice. I’d occasionally have sore elbows, or my wrist might ache for a day, or my shoulders feel tight. But nothing to keyboard home about. That’s the critical bit of news. One day, you’re pretty fine. The next day, you don’t have your job—or any job that requires the use of your hands and wrists. I had to walk away from the computer for over four months—and partially for several months more. That’s right: no income. If I hadn’t found a gifted massage therapist, the right book of stretches, the equipment I should have been using all along, and learned how to pay attention to my body—even just a little bit more—I quite possibly wouldn’t be writing this article today. I wouldn’t be writing anything, anywhere. Most of us have heard of (and even claimed to have read all of) Mihaly Csikszentmihalyi, author of Flow: The Psychology of Optimal Experience, who describes the state of flow—the place our minds go when we are fully engaged and in our element. This lovely state of highly focused activity is deeply satisfying, often creative, and quite familiar to many of us on the web who just can’t quit until the copy sings or the code is untangled or we get our highest score yet in Angry Birds. Our minds may enter that flow, but too often as our brains take flight, all else recedes. And we leave something very important behind. Our bodies. My body wasn’t made to make the same minute movements thousands of times a day, most days of the year, for decades, and neither was yours. The wear and tear sneaks up on you, especially if you’re the obsessive perfectionist that we all pretend not to be. Oh? You’re not obsessed? I wasn’t like this all the time, but I remember sitting across from my husband, eating dinner, and I didn’t hear a word he said. I’d left my brain upstairs in my office, where it was wrestling in a death match with the box model or, God help us all, IE 5.2. I was a writer, too, and I was having my first inkling that I was a content strategist. Work was exciting. I could sit up late, in the flow, fingers flying at warp speed. I could sit until those wretched birds outside mocked me with their damn, cheerful “Hurray, it’s morning!” songs. Suddenly, while, say, washing dishes, the one magical phrase that captured the essence of a voice or idea would pop up, and I would have mowed down small animals and toddlers to get to my computer and hammer out that website or article, to capture that thought before it escaped. Note my use of the word hammer. Sound at all familiar? But where was my body during my work? Jaw jutting forward to see the screen, feet oddly positioned—and then left in place like chunks of marble—back unsupported, fingers pounding the keys, wrists and arms permanently twisted in unnatural angles that we thought were natural. And clicking. Clicking, clicking, clicking that mouse. Thumbing tiny keyboards on phones. A lethal little gesture for tiny little tendons. Though I was fine from, say 1997 to 2004, by the end of 2004 this behavior culminated in disaster. I had repetitive stress injuries, aka repetitive motion injuries. As the Apple site says, “A brief exposure to these conditions would not cause harm. But a prolonged exposure may, in some people, result in reduced ability to function.” I’ll say. I frantically turned to people on lists and forums. “Try a track ball.” Already did that. “Try a tablet.” Worse. One person wrote, “I still come here once in a while and can type a couple sentences, but I’ve permanently got thoracic outlet syndrome and I’ll never work again.” Oh, beauteous web, oh, long-distance friends, farewell. The Wrist Bone’s Connected to the Brain Bone That variation on the old song tells part of the story. Most people (and many of their physicians) believe that tingling fingers and aching wrists MUST be carpel tunnel syndrome. Nope. If your neck juts forward, it tenses and stays tense the entire time you work in that position. Remember how your muscles felt after holding a landline phone with your neck tilted to one side for a long client meeting? Regrettable. Tensing your shoulders because your chair’s not designed properly puts you at risk for thoracic outlet syndrome, a career-killer if ever there was one. The nerves and tendons in your neck and shoulder refer down your arms, and muscles swell around nerves, causing pain and dysfunction. Your elbows have a tendon that is especially vulnerable to repetitive movements (think tennis elbow). Your wrists are performing something akin to a circus act with one thousand shows a day. So, all the fine tendons and ligaments in your fingers have problems that may not start at your wrists at all. Though some people truly do have carpal tunnel syndrome, my finger and wrist problems weren’t solved by heavily massaging my fingers (though, that was helpful, too) or my wrists. They were fixed by work on my neck, upper back, shoulders, arms, and elbows. This explains why many people have surgery for carpal tunnel syndrome and just months later say, “What?! How can I possibly have it again? I had an operation!” Well, fellow buckaroo, you may never have had carpel tunnel syndrome. You may have had—or perhaps will have—one long disaster area from your neck to your fingertips. How to Crawl Back Before trying extreme measures, you may be able to function again even if you feel hopeless. I managed to heal, and so have others, but I’ll always be at risk. As Jen Simmons, of The Web Ahead podcast and other projects told me, “It took a long time to injure myself. It took a long time to get back to where I was. My right arm between my elbow and wrist would start aching intermittently. Eventually, my arm even ached at night. I started each day with yesterday’s pain.” Simple measures, used consistently, helped her back. 1. Massage therapy I don’t remember what the rest of the world is like, but in Portland, Oregon, we have more than one massage therapy college. (Of course we do.) I saw a former teacher at the most respected school. This is not your “It was all so soothing. Why, I fell asleep!” massage. This is “Holy crap, he’s grinding his elbow into my armpit!“ massage therapy, with the emphasis on therapy. I owe him everything. Make sure you have someone who really knows what they’re doing. Get many referrals. Try a question, “Does my psoas muscle affect my back?” If they can’t answer it, flee. Regularly see the one you choose and after a while, depending on how injured you are, you may be able to taper off. 2. Change your equipment You may need to be hands-on with several pieces of equipment before you find the ones that don’t cause more pain. Many companies have restocking fees, charges to ship the equipment you want to return, and other retail atrocities. Always be sure to ask what the return policies are at any company before purchasing. Mice You may have more success than I did with equipment such as the Wacom tablet. Mine came with a pen, and it hurt to repetitively click it. Trackballs are another option but, for many, they are better at prevention than recovery. But let’s get to the really effective stuff. One of the biggest sources of pain is using your mouse. One major reason is that your hand and wrist are in a perpetually unnatural position and you’re also moving your arm quite a bit. Each time you move the mouse, it is placing stress on your neck, shoulders and arms, because you need to lift them slightly in order to move the mouse and you need to angle your wrist. You may also be too injured to use the trackpad all the time, and this mouse, the vertical mouse is a dandy preventative measure, too. Shaking up your patterns is a wise move. I have long fingers, not especially thin, yet the small size works best for me. (They have larger choices available.) What?! A sideways mouse? Yep. All the weight of your hand will be resting on it in the handshake position. Your forearms aren’t constantly twisting over hill and dale. You aren’t using any muscles in your wrist or hand. They are relaxing. You’ll adapt in a day, and oh, oh, what a relief it is. Keyboards I really liked doing business with the people at Kinesis-Ergo. (I’m not affiliated with them in any way.) They have the vertical mouse and a number of keyboards. The one that felt the most natural to me, and, once again, it only takes a day to adapt, is the Freestyle2 for the Mac. They have several options. I kept the keyboard halves attached to each other at first, and then spread them apart a little more. I recommend choosing one that slants and can separate. You can adjust the angle. For a little extra, they’ll make sure it’s all set up and ready to go for you. I’m guessing that some Googling will find you similar equipment, wherever you live. Warning: if you use the ergonomic keyboards, you may have fewer USB ports. The laptop will be too far away to see unless you find a satisfactory setup using a stand. This is the perfect excuse for purchasing a humongous display. You may not look cool while jetting coast to coast in your skinny jeans and what appears to be the old-time orthopedic shoe version of computing gear. But once you have rested and used many of these suggestions consistently, you may be able to use your laptop or other device in all its lovely sleekness during the trip. Other doohickies The Kinesis site and The Human Solution have a wide selection of ergonomic products: standing desks, ergonomically correct chairs, and, yes, even things with foot pedals. Explore! 3. Stop clicking, at least for a while Use keyboard shortcuts, but use them slowly. This is not the time to show off your skillz. You’ll be sort of like a recovering alcoholic, in that you’ll be a recovering repetitive stress survivor for the rest of your life, once you really injure yourself. Always be vigilant. There’s also a bit of software sold by The Human Solution and other places, and it was my salvation. It’s called the McNib for Macs, and the Nib for PCs. (I’ve only used the McNib.) It’s for click-free mousing. I found it tricky to use when writing markup and code, but you may become quite adept at it. A little rectangle pops up on your screen, you mouse over it and choose, let’s say, “Double-click.” Until you change that choice, if you mouse over a link or anything else, it will double-click it for you. All you do is glide your mouse around. Awkward for a day or two, but you’ll pick it up quickly. Though you can use it all day for work, even if you just use this for browsing LOLcats or Gary Vaynerchuk’s YouTube videos, it will help you by giving your fingers a sweet break. But here’s the sad news. The developer who invented this died a few years ago. (Yes, I used to speak to him on the phone.) While it is for sale, it isn’t compatible with Mac OS X Lion or anything subsequent. PowerPC strikes again. His site is still up. Demos for use with older software can be downloaded free at his old site, or at The Human Solution. Perhaps an enterprising developer can invent something that would provide this help, without interfering with patents. Rumor has it among ergonomic retailers (yes, I’m like a police dog sniffing my way to a criminal once I head down a trail) that his company was purchased by a company in China, with no update in sight. 4. Use built-in features That little microphone icon that comes up alongside the keyboard on your iPhone allows you to speak your message instead of incessantly thumbing it. I believe it works in any program that uses the keyboard. It’s not Siri. She’s for other things, like having a personal relationship with an inanimate object. Apple even has a good section on ergonomics. You think I’m intense about this subject? To improve your repetitive stress, Apple doesn’t want you to use oral contraceptives, alcohol, or tobacco, to which I say, “Have as much sex, bacon, and chocolate as possible to make up for it.” Apple’s info even has illustrations of things like a faucet dripping into what is labeled a bucket full of “TRAUMA.” Sounds like upgrading to Yosemite, but I digress. 5. Take breaks If it’s a game or other non-essential activity, take a break for a month. Fine, now that I’ve called games non-essential, I suppose you’ll all unfollow me on Twitter. 6. Whether you are sore or not, do stretches throughout the day This is a big one. Really big. The best book on the subject of repetitive stress injuries is Conquering Carpal Tunnel Syndrome and Other Repetitive Strain Injuries: A Self-Care Program by Sharon J. Butler. Don’t worry, most of it is illustrations. Pretend it’s a graphic novel. I’m notorious for never reading instructions, and who on earth reads the introduction of a book, unless they wrote it? I wrote a book a long time ago, and I bet my house, husband, and life savings that my own parents never read the intro. Well, I did read the intro to this book, and you should, too. Stretching correctly, in a way that doesn’t further hurt you, that keeps you flexible if you aren’t injured, that actually heals you, calls for precision. Read and you’ll see. The key is to stretch just until you start to feel the stretch, even if that’s merely a tiny movement. Don’t force anything past that point. Kindly nurse yourself back to health, or nurture your still-healthy body by stretching. Over the following days, weeks, months, you’ll be moving well past that initial stretch point. The book is brimming with examples. You only have to pick a few stretches, if this is too much to handle. Do it every single day. I can tell you some of the best ones for me, but it depends on the person. You’ll also discover in Butler’s book that areas that you think are the problem are sometimes actually adjacent to the muscle or tendon that is the source of the problem. Add a few stretches or two for that area, too. But please follow the instructions in the introduction. If you overdo it, or perform some other crazy-ass hijinks, as I would be tempted to do, I am not responsible for your outcome. I give you fair warning that I am not a healthcare provider. I’m just telling you as a friend, an untrained one, at that, who has been through this experience. 7. Follow good habits Develop habits like drinking lots of water (which helps with lactic acid buildup in muscles), looking away from the computer for twenty seconds every twenty to thirty minutes, eating right, and probably doing everything else your mother told you to do. Maybe this is a good time to bring up flossing your teeth, and going outside to play instead of watching TV. As your mom would say, “It’s a beautiful day outside, what are you kids doing in here?” 8. Speak instead of writing, if you can Amber Simmons, who is very smart and funny, once tweeted in front of the whole world that, “@carywood is a Skype whore.” I was always asking people on Twitter if we could Skype instead of using iChat or exchanging emails. (I prefer the audio version so I don’t have to, you know, do something drastic like comb my hair.) Keyboarding is tough on hands, whether you notice it or not at the time, and when doing rapid-fire back-and-forthing with people, you tend to speed up your typing and not take any breaks. This is a hand-killer. Voice chats have made such a difference for me that I am still a rabid Skype whore. Wait, did I say that out loud? Speak your text or emails, using Dragon Dictate or other software. In about 2005, accessibility and user experience design expert, Derek Featherstone, in Canada, and I, at home, chatted over the internet, each of us using a different voice-to-text program. The programs made so many mistakes communicating with each other that we began that sort of endless, tearful laughing that makes you think someone may need to call an ambulance. This type of software has improved quite a bit over the years, thank goodness. Lack of accessibility of any kind isn’t funny to Derek or me or to anyone who can’t use the web without pain. 9. Watch your position For example, if you lift up your arms to use the computer, or stare down at your laptop, you’ll need to rearrange your equipment. The internet has a lot of information about ideal ergonomic work areas. Please use a keyboard drawer. Be sure to measure the height carefully so that even a tented keyboard, like the one I recommend, will fit. I also recommend getting the version of the Freestyle with palm supports. Just these two measures did much to help both Jen Simmons and me. 10. If you need to take anti-inflammatories, stop working If you are all drugged up on ibuprofen, and pounding and clicking like mad, your body will not know when you are tired or injuring yourself. I don’t recommend taking these while using your computing devices. Perhaps just take it at night, though I’m not a fan of that category of medications. Check with your healthcare provider. At least ibuprofen is an anti-inflammatory, which may help you. In contrast, acetaminophen (paracetamol) only makes your body think it’s not in pain. Ice is great, as is switching back and forth between ice and heat. But again, if you need ice and ibuprofen you really need to take a major break. 11. Don’t forget the rest of your body I’ve zeroed in on my personal area of knowledge and experience, but you may be setting yourself up for problems in other areas of your body. There’s what is known to bad writers as “a veritable cornucopia” of information on the web about how to help the rest of your body. A wee bit of research on the web and you’ll discover simple exercises and stretches for the rest of your potential catastrophic areas: your upper back, your lower back, your legs, ankles, and eyes. Do gentle stretches, three or four times a day, rather than powering your way through. Ease into new equipment such as standing desks. Stretch those newly challenged areas until your body adapts. Pay attention to your body, even though I too often forget mine. 12. Remember the children Kids are using equipment to play highly addictive games or to explore amazing software, and if these call for repetitive motions, children are being set up for future injuries. They’ll grab hold of something, as parents out there know, and play it 3,742 times. That afternoon. Perhaps by the time they are adults, everything will just be holograms and mind-reading, but adult fingers and hands are used for most things in life, not just computing devices and phones with keyboards sized for baby chipmunks. I’ll be watching you Quickly now, while I (possibly) have your attention. Don’t move a muscle. Is your neck tense? Are you unconsciously lifting your shoulders up? How long since you stopped staring at the screen? How bright is your screen? Are you slumping (c’mon now, ‘fess up) and inviting sciatica problems? Do you have to turn your hands at an angle relative to your wrist in order to type? Uh-oh. That’s a bad one. Your hands, wrists, and forearms should be one straight line while keyboarding. Future you is begging you to change your ways. Don’t let your #ThrowbackThursday in 2020 say, “Here’s a photo from when I used to be able to do so many wonderful things that I can’t do now.” And, whatever you do, don’t try for even a nanosecond to push through the pain, or the next thing you know, you’ll be an unpaid extra in The Expendables 7. 2014 Carolyn Wood carolynwood 2014-12-06T00:00:00+00:00 https://24ways.org/2014/dont-push-through-the-pain/ business
60 What’s Ahead for Your Data in 2016? Who owns your data? Who decides what can you do with it? Where can you store it? What guarantee do you have over your data’s privacy? Where can you publish your work? Can you adapt software to accommodate your disability? Is your tiny agency subject to corporate regulation? Does another country have rights over your intellectual property? If you aren’t the kind of person who is interested in international politics, I hate to break it to you: in 2016 the legal foundations which underpin our work on the web are being revisited in not one but three major international political agreements, and every single one of those questions is up for grabs. These agreements – the draft EU Data Protection Regulation (EUDPR), the Trans-Pacific Partnership (TPP), and the draft Transatlantic Trade and Investment Partnership (TTIP) – stand poised to have a major impact on your data, your workflows, and your digital rights. While some proposed changes could protect the open web for the future, other provisions would set the internet back several decades. In this article we will review the issues you need to be aware of as a digital professional. While each of these agreements covers dozens of topics ranging from climate change to food safety, we will focus solely on the aspects which pertain to the work we do on the web. The Trans-Pacific Partnership The Trans-Pacific Partnership (TPP) is a free trade agreement between the US, Japan, Malaysia, Vietnam, Singapore, Brunei, Australia, New Zealand, Canada, Mexico, Chile and Peru – a bloc comprising 40% of the world’s economy. The agreement is expected to be signed by all parties, and thereby to come into effect, in 2016. This agreement is ostensibly about the bloc and its members working together for their common interests. However, the latest draft text of the TPP, which was formulated entirely in secret, has only been made publicly available on a Medium blog published by the U.S. Trade Representative which features a patriotic banner at the top proclaiming “TPP: Made in America.” The message sent about who holds the balance of power in this agreement, and whose interests it will benefit, is clear. By far the most controversial area of the TPP has centred around the provisions on intellectual property. These include copyright terms of up to 120 years, mandatory takedowns of allegedly infringing content in response to just one complaint regardless of that complaint’s validity, heavy and disproportionate penalties for alleged violations, and – most frightening of all – government seizures of equipment allegedly used for copyright violations. All of these provisions have been raised without regard for the fact that a trade agreement is not the appropriate venue to negotiate intellectual property law. Other draft TPP provisions would restrict the digital rights of people with disabilities by banning the workarounds they use every day. These include no exemptions for the adaptations of copywritten works for use in accessible technology (such as text-to-speech in ebook readers), a ban on circumventing DRM or digital locks in order to convert a file to an accessible format, and requiring the takedown of adapted works, such as a video with added subtitles, even if that adaptation would normally have fallen under the definition of fair use. The e-commerce provisions would prohibit data localisation, the practice of requiring data to be physically stored on servers within a country’s borders. Data localisation is growing in popularity following the Snowden revelations, and some of your own personal data may have been recently “localised” in response to the Safe Harbor verdict. Prohibiting data localisation through the TPP would address the symptom but not the cause. The Electronic Frontier Foundation has published an excellent summary of the digital rights issues raised by the agreement along with suggested actions American readers can take to speak out. Transatlantic Trade and Investment Partnership TTIP stands for the Transatlantic Trade and Investment Partnership, a draft free trade agreement between the United States and the EU. The plan has been hugely controversial and divisive, and the internet and digital provisions of the draft form just a small part of that contention. The most striking digital provision of TTIP is an attempt to circumvent and override European data protection law. As EDRI, a European digital rights organisation, noted: “the US proposal would authorise the transfer of EU citizens’ personal data to any country, trumping the EU data protection framework, which ensures that this data can only be transferred in clearly defined circumstances. For years, the US has been trying to bypass the default requirement for storage of personal data in the EU. It is therefore not surprising to see such a proposal being {introduced} in the context of the trade negotiations.” This draft provision was written before the Safe Harbor data protection agreement between the EU and US was invalidated by the Court of Justice of the European Union. In other words, there is no longer any protective agreement in place, and our data is as vulnerable as this political situation. However, data protection is a matter of its own law, the acting Data Protection Directive and the draft EU Data Protection Reform. A trade agreement, be it the TTIP or the TPP, is not the appropriate place to revamp a law on data protection. Other digital law issues raised by TTIP include the possibility of renegotiating standards on encryption (which in practice means lowering them) and renegotiating intellectual property rights such as copyright. The spectre of net neutrality has even put in an appearance, with an attempt to introduce rules on access to the internet itself being introduced as provisions. TTIP is still under discussion, and this month the EU trade representative said that “we agreed to further intensify our work during 2016 to help negotiations move forward rapidly.” This has been cleverly worded: this means the agreement has little chance of being passed or coming into effect in 2016, which buys civil society more precious time to speak out. The EU Data Protection Regulation On 15 December 2015 the European Commission announced their agreement on the text of the draft General Data Protection Regulation. This law will replace its predecessor, the EU Data Protection Regulation of 1995, which has done a remarkable job of protecting data privacy across the continent throughout two decades of constant internet evolution. The goal of the reform process has been to return power over data, and its uses, to citizens. Users will have more control over what data is captured about them, how it is used, how it is retained, and how it can be deleted. Businesses and digital professionals, in turn, will have to restructure their relationships with client and customer data. Compliance obligations will increase, and difficult choices will have to be made. However, this time should be seen as an opportunity to rethink our relationship with data. After Snowden, Schrems, and Safe Harbor, it is clear that we cannot go back to the way things were before. In an era of where every one of our heartbeats is recorded on a wearable device and uploaded to a surveilled data centre in another country, the need for reform has never been more acute. While texts of the draft GDPR are available, there is not enough mulled wine in the world that will help you get through them. Instead, the law firm Fieldfisher Waterhouse has produced this helpful infographic which will give you a good idea of the changes we can expect to see (view full size): The most surprising outcome announced on 15 December was the new regulation’s teeth. Under the new law, companies that fail to heed the updated data protection rules will face fines of up to 4% of their global turnover. Additionally, the law expands the liability for data protection to both the controller (the company hosting the data) and the data processor (the company using the data). The new law will also introduce a one-stop shop for resolving concerns over data misuse. Companies will no longer be able to headquarter their European operations in countries which are perceived to have relatively light-touch data protection enforcement (that means you, Ireland) as a means of automatically rejecting any complaints filed by citizens outside that country. For digital professionals, the most immediate concern is analytics. In fact, I am going to make a prediction: in 2016 we will begin to see the same misguided war on analytics that we saw on cookies. By increasing the legal liabilities for both data processors and controllers – in other words, the company providing the analytics as well as the site administrator studying them – the new regulation risks creating disproportionate burdens as well as the same “guilt by association” risks we saw in 2012. There have already been statements made by some within the privacy community that analytics are tracking, and tracking is surveillance, therefore analytics are evil. Yet “just don’t use analytics,” as was suggested by one advocate, is simply not an option. European regulators should consult with the web community to gain a clear understanding of why analytics are vital to everyday site administrators, and must find a happy medium that protects users’ data without criminalising every website by default. No one wants a repeat of the crisis of consent, as well as the scaremongering, caused by the cookie law. Assuming the text is adopted in 2016, the new EU Data Protection Regulation would not come into effect until 2018. We have a considerable challenge ahead, but we also have plenty of time to get it right. 2015 Heather Burns heatherburns 2015-12-21T00:00:00+00:00 https://24ways.org/2015/whats-ahead-for-your-data-in-2016/ business
156 Mobile 2.0 Thinking 2.0 As web geeks, we have a thick skin towards jargon. We all know that “Web 2.0” has been done to death. At Blue Flavor we even have a jargon bucket to penalize those who utter such painfully overused jargon with a cash deposit. But Web 2.0 is a term that has lodged itself into the conscience of the masses. This is actually a good thing. The 2.0 suffix was able to succinctly summarize all that was wrong with the Web during the dot-com era as well as the next evolution of an evolving media. While the core technologies actually stayed basically the same, the principles, concepts, interactions and contexts were radically different. With that in mind, this Christmas I want to introduce to you the concept of Mobile 2.0. While not exactly a new concept in the mobile community, it is relatively unknown in the web community. And since the foundation of Mobile 2.0 is the web, I figured it was about time for you to get to know each other. It’s the Carriers’ world. We just live in it. Before getting into Mobile 2.0, I thought first I should introduce you to its older brother. You know the kind, the kid with emotional problems that likes to beat up on you and your friends for absolutely no reason. That is the mobile of today. The mobile ecosystem is a very complicated space often and incorrectly compared to the Web. If the Web was a freewheeling hippie — believing in freedom of information and the unity of man through communities — then Mobile is the cutthroat capitalist — out to pillage and plunder for the sake of the almighty dollar. Where the Web is relatively easy to publish to and ultimately make a buck, Mobile is wrought with layers of complexity, politics and obstacles. I can think of no better way to summarize these challenges than the testimony of Jason Devitt to the United States Congress in what is now being referred to as the “iPhone Hearing.” Jason is the co-founder and CEO of SkyDeck a new wireless startup and former CEO of Vindigo an early pioneer in mobile content. As Jason points out, the mobile ecosystem is a closed door environment controlled by the carriers, forcing the independent publisher to compete or succumb to the will of corporate behemoths. But that is all about to change. Introducing Mobile 2.0 Mobile 2.0 is term used by the mobile community to describe the current revolution happening in mobile. It describes the convergence of mobile and web services, adding portability, ubiquitous connectivity and location-aware services to add physical context to information found on the Web. It’s an important term that looks toward the future. Allowing us to imagine the possibilities that mobile technology has long promised but has yet to deliver. It imagines a world where developers can publish mobile content without the current constraints of the mobile ecosystem. Like the transition from Web 1.0 to 2.0, it signifies the shift away from corporate or brand-centered experiences to user-centered experiences. A focus on richer interactions, driven by user goals. Moving away from proprietary technologies to more open and standard ones, more akin to the Web. And most importantly (from our perspective as web geeks) a shift away from kludgy one-off mobile applications toward using the Web as a platform for content and services. This means the world of the Web and the world of Mobile are coming together faster than you can say ARPU (Average Revenue Per User, a staple mobile term to you webbies). And this couldn’t come at a better time. The importance of understanding and addressing user context is quickly becoming a crucial consideration to every interactive experience as the number of ways we access information on the Web increases. Mobile enables the power of the Web, the collective information of millions of people, inherit payment channels and access to just about every other mass media to literally be overlaid on top of the physical world, in context to the person viewing it. Anyone who can’t imagine how the influence of mobile technology can’t transform how we perform even the simplest of daily tasks needs to get away from their desktop and see the new evolution of information. The Instigators But what will make Mobile 2.0 move from idillic concept to a hardened market reality in 2008 will be four key technologies. Its my guess that you know each them already. 1. Opera Opera is like the little train that could. They have been a driving force on moving the Web as we know it on to mobile handsets. Opera technology has proven itself to be highly adaptable, finding itself preloaded on over 40 million handsets, available on televisions sets through Nintendo Wii or via the Nintendo DS. 2. WebKit Many were surprised when Apple chose to use KHTML instead of Gecko (the guts of Firefox) to power their Safari rendering engine. But WebKit has quickly evolved to be a powerful and flexible browser in the mobile context. WebKit has been in Nokia smartphones for a few years now, is the technology behind Mobile Safari in the iPhone and the iPod Touch and is the default web technology in Google’s open mobile platform effort, Android. 3. The iPhone The iPhone has finally brought the concepts and principles of Mobile 2.0 into the forefront of consumers minds and therefore developers’ minds as well. Over 500 web applications have been written specifically for the iPhone since its launch. It’s completely unheard of to see so many applications built for the mobile context in such a short period of time. 4. CSS & Javascript Web 2.0 could not exist without the rich interactions offered by CSS and Javascript, and Mobile 2.0 is no different. CSS and Javascript support across multiple phones historically has been, well… to put it positively… utter crap. Javascript finally allows developers to create interesting interactions that support user goals and the mobile context. Specially, AJAX allows us to finally shed the days of bloated Java applications and focus on portable and flexible web applications. While CSS — namely CSS3 — allows us to create designs that are as beautiful as they are economical with bandwidth and load times. With Leaflets, a collection of iPhone optimized web apps we created, we heavily relied on CSS3 to cache and reuse design elements over and over, minimizing download times while providing an elegant and user-centered design. In Conclusion It is the combination of all these instigators that is significantly decreasing the bar to mobile publishing. The market as Jason Devitt describes it, will begin to fade into the background. And maybe the world of mobile will finally start looking more like the Web that we all know and love. So after the merriment and celebration of the holiday is over and you look toward the new year to refresh and renew, I hope that you take a seriously consider the mobile medium. By this time next year, it is predicted that one-third of humanity will be using mobile devices to access the Web. 2007 Brian Fling brianfling 2007-12-21T00:00:00+00:00 https://24ways.org/2007/mobile-2-0/ business
224 Go Forth and Make Awesomeness We’ve all dreamed of being a superhero: maybe that’s why we’ve ended up on the web—a place where we can do good deeds and celebrate them on a daily basis. Wear your dreams At age four, I wore my Wonder Woman Underoos around my house, my grandparents’ house, our neighbor’s house, and even around the yard. I wanted to be a superhero when I grew up. I was crushed to learn that there is no school for superheroes—no place to earn a degree in how to save the world from looming evil. Instead, I—like everyone else—was destined to go to ordinary school to focus on ABCs and 123s. Even still, I want to save the world. Intend your goodness Random acts of kindness make a difference. Books, films, and advertising campaigns tout random acts of kindness and the positive influence they can have on the world. But why do acts of kindness have to be so random? Why can’t we intend to be kind? A true superhero wakes each morning intending to perform selfless acts for the community. Why can’t we do the same thing? As a child, my mother taught me to plan to do at least three good deeds each day. And even now, years later, I put on my invisible cape looking for ways to do good. Here are some examples: slowing down to allow another driver in before me from the highway on-ramp bringing a co-worker their favorite kind of coffee or tea sharing my umbrella on a rainy day holding a door open for someone with full hands listening intently when someone shares a story complimenting someone on a job well done thanking someone for a job well done leaving a constructive, or even supportive comment on someone’s blog As you can see, these acts are simple. Doing good and being kind is partially about being aware—aware of the words we speak and the actions we take. Like superheroes, we create our own code of conduct to live by. Hopefully, we choose to put the community before ourselves (within reason) and to do our best not to damage it as we move through our lives. Take a bite out of the Apple With some thought, we can weave this type of thinking and action into our business choices. We can take the simple acts of kindness concept and amplify it a bit. With this amplification, we can be a new kind of superhero. In 1997, during a presentation, Steve Jobs stated Apple’s core value in a simple, yet powerful, sentence: We believe that people with passion can change the world for the better. Apple fan or not, those are powerful words. Define your core Every organization must define its core values. Core values help us to frame, recognize, and understand the principles our organization embodies and practices. It doesn’t matter if you’re starting a new organization or you want to define values within an existing organization. Even if you’re a freelancer, defining core values will help guide your decisions and actions. If you can, work as a team to define core values. Gather the people who are your support system—your business partners, your colleagues, and maybe even a trusted client—this is now your core value creation team. Have a brainstorming session with your team. Let ideas flow. Give equal weight to the things people say. You may not hear everything you thought you might hear—that’s OK. You want the session to be free-flowing and honest. Ask yourself and your team questions like: What do you think my/our/your core values are? What do you think my/our/your priorities are? What do you think my/our/your core values should be? What do you think my/our/your priorities should be? How do you think I/we should treat customers, clients, and each other? How do we want others to treat us? What are my/our/your success stories? What has defined these experiences as successful? From this brainstorming session, you will craft your superhero code of conduct. You will decide what you will and will not do. You will determine how you will and will not act. You’re setting the standards that you will live and work by—so don’t take this exercise lightly. Take your time. Use the exercise as a way to open a discussion about values. Find out what you and your team believe in. Set these values and keep them in place. Write them down and share these with your team and with the world. By sharing your core values, you hold yourself more accountable to them. You also send a strong message to the rest of the world about what type of organization you are and what you believe in. Other organizations and people may decide to align or not to align themselves with you because of your core values. This is good. Chances are, you’ll be happier and more profitable if you work with other organizations and people who share similar core values. Photo: Laura Winn During your brainstorming session, list keywords. Don’t edit. Allow things to take their course. Some examples of keywords might be: Ability · Achievement · Adventure · Ambition · Altruism · Awareness · Balance · Caring · Charity · Citizenship · Collaboration · Commitment · Community · Compassion · Consideration · Cooperation · Courage · Courtesy · Creativity · Democracy · Dignity · Diplomacy · Discipline · Diversity · Education · Efficiency · Energy · Equality · Excellence · Excitement · Fairness · Family · Freedom · Fun · Goodness · Gratefulness · Growth · Happiness · Harmony · Helping · Honor · Hope · Humility · Humor · Imagination · Individuality · Innovation · Integrity · Intelligence · Joy · Justice · Kindness · Knowledge · Leadership · Learning · Loyalty · Meaning · Mindfulness · Moderation · Modesty · Nurture · Openness · Organization · Passion · Patience · Peace · Planning · Principles · Productivity · Purpose · Quality · Reliability · Respectfulness · Responsibility · Security · Sensitivity · Service · Sharing · Simplicity · Stability · Tolerance · Transparency · Trust · Truthfulness · Understanding · Unity · Variety · Vision · Wisdom After you have a list of keywords, create your core values statement using the themes from your brainstorming session. There are no rules: while above, Steve Jobs summed up Apple’s core values in one sentence, Zappos has ten core values: Deliver WOW Through Service Embrace and Drive Change Create Fun and A Little Weirdness Be Adventurous, Creative, and Open-Minded Pursue Growth and Learning Build Open and Honest Relationships With Communication Build a Positive Team and Family Spirit Do More With Less Be Passionate and Determined Be Humble To see how Zappos’ employees embrace these core values, watch the video they created and posted on their website. Dog food is yummy Although I find merit in every keyword listed, I’ve distilled my core values to their simplest form: Make awesomeness. Do good. How do you make awesomeness and do good? You need ambition, balance, collaboration, commitment, fun, and you need every keyword listed to support these actions. Again, there are no rules: your core values can be one sentence or a bulleted list. What matters is being true to yourself and creating core values that others can understand. Before I start any project I ask myself: is there a way to make awesomeness and to do good? If the answer is “yes,” I embrace the endeavor because it aligns with my core values. If the answer is “no,” I move on to a project that supports my core values. Unleash your powers Although every organization will craft different core values, I imagine that you want to be a superhero and that you will define “doing good” (or something similar) as one of your core values. Whether you work by yourself or with a team, you can use the web as a tool to help do good. It can be as simple as giving a free hug, or something a little more complex to help others and help your organization meet the bottom line. Some interesting initiatives that use the web to do good are: Yahoo!: How Good Grows Desigual: Happy Hunters Edge Shave Gel: Anti-irritation campaign Knowing your underlying desire to return to your Underoos-and-cape-sporting childhood and knowing that you don’t always have the opportunity to develop an entire initiative to “do good,” remember that as writers, designers, and developers, we can perform superhero acts on a daily basis by making content, design, and development accessible to the greatest number of people. By considering other people’s needs, we are intentionally performing acts of kindness—we’re doing good. There are many ways to write, design, and develop websites—many of which will be discussed in other 24ways.org articles. As we make content, design, and development decisions—as we develop campaigns and initiatives—we need to keep our core values in mind. It’s easy to make a positive difference in the world. Just be the superhero you’ve always wanted to be. Go forth and make awesomeness. If you would like to do good today, support The United Nations Children’s Fund, an organization that works for children’s rights, their survival, development and protection, by purchasing this year’s 24 ways Annual 2010 created by Five Simple Steps. All proceeds go to UNICEF. 2010 Leslie Jensen-Inman lesliejenseninman 2010-12-04T00:00:00+00:00 https://24ways.org/2010/go-forth-and-make-awesomeness/ business
268 Getting the Most Out of Google Analytics Something a bit different for today’s 24 ways article. For starters, I’m not a designer or a developer. I’m an evil man who sells things to people on the internet. Second, this article will likely be a little more nebulous than you’re used to, since it covers quite a number of points in a relatively short space. This isn’t going to be the complete Google Analytics Conversion University IQ course compressed into a single article, obviously. What it will be, however, is a primer on setting up and using Google Analytics in real life, and a great deal of what I’ve learned using Google Analytics nearly every working day for the past six (crikey!) years. Also, to be clear, I’ll be referencing new Google Analytics here; old Google Analytics is for loooosers (and those who want reliable e-commerce conversion data per site search term, natch). You may have been running your Analytics account for several years now, dipping in and out, checking traffic levels, seeing what’s popular… and that’s about it. Google Analytics provides so much more than that, but the number of reports available can often intimidate users, and documentation and case studies on their use are minimal at best. Let’s start! Setting up your Analytics profile Before we plough on, I just want to run through a quick checklist that some basic settings have been enabled for your profile. If you haven’t clicked it, click the big cog on the top-right of Google Analytics and we’ll have a poke about. If you have an e-commerce site, e-commerce tracking has been enabled
 If your site has a search function, site search tracking has been enabled. Query string parameters that you do not want tracked as separate pages have been excluded (for example, any parameters needed for your platform to function, otherwise you’ll get multiple entries for the same page appearing in your reports) Filters have been enabled on your main profile to exclude your office IP address and any IPs of people who frequently access the site for work purposes. In decent numbers they tend to throw data off a tad.
 You may also find the need to set up multiple profiles prefiltered for specific audience segments. For example, at Lovehoney we have seventeen separate profiles that allow me quick access to certain countries, devices and traffic sources without having to segment first. You’ll also find load time for any complex reports much improved. Use the same filter screen as above to set up a series of profiles that only include, say, mobile visits, or UK visitors, so you can quickly analyse important segments. Matt, what’s a segment? A segment is a subsection of your visitor base, which you define and then call on in reports to see specific data for that subsection. For example, in this report I’ve defined two segments, the first for IE6 users and the second for IE7. Segments are easily created by clicking the Advanced Segments tabs at the top of any report and clicking +New Custom Segment. What does your site do? Understanding the goals of your site is an oft-covered topic, but it’s necessary not just to form a better understand of your business and prioritize your time. Understanding what you wish visitors to do on your site translates well into a goal-driven analytics package like Google Analytics. Every site exists essentially to sell something, either financially through e-commerce, or to sell an idea or impart information, get people to download a CV or enquire about service, or to sell space on that website to advertisers. If the site did not provide a positive benefit to its owners, it would not have a reason for being. Once you have understood the reason why you have a site, you can map that reason on to one of the three goal types Google Analytics provides. E-commerce This conversion type registers transactions as part of a sales process which requires a monetary value, what products have been bought, an SKU (stock keeping unit), affiliation (if you’re then attributing the sale to a third party or franchise) and so on. The benefit of e-commerce tracking is not only assigning non-arbitrary monetary value to behaviour of visitors on your site, as well as being able to see ancillary costs such as shipping, but seeing product-level information, like which products are preferred from various channels, popular categories, and so on. However, I find the e-commerce tracking options also useful for non-e-commerce sites. For example, if you’re offering downloads or subscriptions and having an email address or user’s details is worth something to you, you can set up e-commerce tracking to understand how much value your site is bringing. For example, an email address might be worth 20p to you, but if it also includes a name it’s worth 50p. A contact telephone number is worth £2, and so on. Page goals Page goals, unsurprisingly, track a visit to a page (often with a sequence of pages leading up to that page). This is what’s referred to as a goal funnel, and is generally used to track how visitors behave in a multistep checkout. Interestingly, the page doesn’t have to actually exist. For example, if you have a single page checkout, you can register virtual page views using trackPageview() when a visitor clicks into a particular section of the checkout or other form. If your site is geared towards getting someone to a particular page, but where there isn’t a transaction (for example, a subscription page) this is for you. There are also behavioural goals, such as time on site and number of pages viewed, which are geared towards sites that make money from advertising. But, going back to the page goals, these can be abstracted using regular expressions, meaning that you can define a funnel based on page type rather than having to set individual folders. In this example, I’ve created regexes for the main page types on my site, so I can create a wide funnel that captures visitors from where they enter through to checkout. Events Event tracking registers a predefined event, such as playing a video, or some interaction that can trigger JavaScript, such as a Tweet This button. Events can then be triggered using the trackEvent() call. If you want someone to complete watching a video, you would code your player to fire trackEvent() upon completion. While I don’t use events as goals, I use events elsewhere to see how well a video play aids to conversion. This not only helps me justify the additional spend on creating video content, but also quickly highlights which videos are underperforming as sales tools. What a visitor can tell you 
Now you have some proper goals set up, we can start to see how changes in content (on-site and external) affect those goals. Ultimately, when a visitor comes to your site, they bring information with them: where they came from (a search engine – including: keyword searched for; a referral; direct; affiliate; or ad campaign) demographics (country; whether they’re new or returning, within thirty days) technical information (browser; screen size; device; bandwidth) site-specific information (landing page; next click; previous values assigned to them as custom variables*) * A note about custom variables. There’s no hope in hell that I can cover custom variables in this article. Go research them. Custom variables are the single best way to hack Google Analytics and bend it to your will. Custom variables allow you to record anything you want about a visitor, which that visitor will then carry around with them between visits. It’s also great for plugging other services into Google Analytics (as shown by the marvelous way Visual Website Optimizer allows you to track and segment tests within the GA interface). Just make sure not to breach the terms of service, eh? CSI your website Police procedural TV shows are all the same: the investigators are called to a crime and come across a clue; there’s then an autopsy; new evidence leads them to a new location; they find a new clue; they put two and two together; they solve the mystery. This is your life now. Exciting! So, now you’re gathering a wealth of information about what sort of people visit your site, what they do when they’re there, and what eventually gets them to drive value to you. It’s now your job to investigate all these little clues to see which types of people drive the most value, and what you can change to improve it. Maybe not that exciting. However, Google Analytics comes pre-armed with extensive reports for you to delve into. As an e-commerce guy (as opposed to a page goal guy) my day pretty much follows the pattern below. Look at e-commerce conversion rate by traffic source compared to the same day in the previous week and previous month. As ours is an e-commerce site, we have weekly and monthly trends. A big spike on Sundays and Mondays, and payday towards the end of the month is always good; on the third week of a month there tends to be a lull. Spend time letting your Google Analytics data brew, understand your own trends and patterns, and you’ll start to get a feel for when something isn’t quite right. Traffic Sources → Sources → All Traffic Look at the conversion rate by landing page for any traffic source that feels significantly different to what’s expected. Check bounce rates, drill down to likely landing pages and check search keyword or referral site to see if it’s a particular subset of visitor. You can do this by clicking Secondary Dimension and choosing Keyword or Source. If it’s direct, choose Visitor Type to break down by new or returning visitor. Content → Site Content → Landing Pages I then tend to flip into Content Drilldown to see what the next clicks were from those landing pages, and whether they changed significantly to the date I’m comparing with. If they have, that’s usually an indicator of changed content (or its relevancy). Remember, if a bunch of people have found their way to your page via a method you’re not expecting (such as a mention on a Spanish radio station – this actually happened to me once), while the content hasn’t changed, the relevancy of it to the audience may have. Content → Site Content → Content Drilldown Once I have an idea of what content was consumed, and whether it was relevant to the user, I then look at the visitor specifics, such as browser or demographic data, to see again whether the change was limited to a specific subset. Site speed, for example, is normally a good factor towards bounce rate, so compare that with previous data as well. Now, to be investigating at this level you still need a serious amount of data, in order to tell what’s a significant change or not. If you’re struggling with a small number of visitors, you might find reporting on a weekly or fortnightly basis more appropriate. However, once you’ve looked into the basics of why changes happen to the value of your site, you’ll soon find yourself limited by the reports offered in Standard Reporting. So, it’s time to build your own. Hooray! Custom reporting Google Analytics provides the tools to build reports specific to the types of investigations you frequently perform. Welcome to my world. Custom reports are quite simple to build: first, you determine the metric you want the report to cover (number of visitors, bounce rate, conversion rate, and so on), then choose a set of dimensions that you’d like to segment the report by (say, the source of the traffic, and whether they were new or returning users). You can filter the report, including or excluding particular dimension values, and you can assign the report to any of the profiles you created earlier. In the example below, I’ve created a report that shows me visits and conversion rate for any Google traffic that landed directly only on a product page. I can then drill down on each product page to see the complete phrases use to search. I can use this information in two ways: I can see which products aren’t converting, which shows me where I need to work harder on merchandising. I can give this information to my content team, showing them the actual phrases visitors used to reach our product content, helping them write better targeted product descriptions. The possibilities here are nearly endless, but here are a few examples of reports I find useful: Non-brand inbound search By creating a report that shows inbound search traffic which doesn’t include your brand, you can see more clearly the behaviour of visitors most likely to be unfamiliar with your site and brand values, without having to rely on the clumsy new or returning demographic date. Traffic/conversion/sales by hour This is pure stats porn, but actually more useful than real-time data. By seeing this data broken down at an hourly level, you can not only compare the current day to previous days, but also see the best performing times for email broadcasts and tweets. Visits, load time, conversion and sales by page and browser Page speed can often kill conversion rates, but it’s difficult to prove the value of focusing on speed in monetary terms. Having this report to hand helps me drive Operation Greenbelt, our effort to get into the sub-1.5 second band in Google Webmaster Tools. Useful things you can’t do in custom reporting If you have a search function on your website, then Conversion Rate and Products Bought by Site Search Term is an incredibly useful report that allows you to measure the effectiveness of your site’s search engine at returning products and content related to the search term used. By including the products actually bought by visitors who searched for each term, you can use this information to better searchandise these results, escalating high propensity and high value products to the top of the results. However, it’s not possible to get this information out of new Google Analytics. Try it, select the following in the report builder: Metrics: total unique searches; e-commerce or goal conversion rate Dimensions: search term; product You’ll see that the data returned is a little nonsensical, though a 2,000% conversion rate would be nice. However, you can get more accurate information using advanced segments. By creating individual segments to define users who have searched for a particular term, you can run the sales performance and product performance reports as normal. It’s laborious, but it teaches a good lesson: data that seems inaccessible can normally be found another way! Reporting infrastructure Now that you have a series of reports that you can refer to on a daily or weekly basis, it’s time to put together a regular reporting infrastructure. Even if you’re not reporting to someone, having a set of key performance indicators that you can use to see how your performance is improving over time allows you to set yourself business goals on a monthly and annual basis. For my own reporting, I take some high-level metrics (such as visitors, conversion rate and average order value), and segment them by traffic source and, separately, landing page. These statistics I record weekly and report: current week compared with previous week same week previous year (if available) 4 week average 13 week average 52 week average (if available) This takes into account weekly, monthly, seasonal and annual trends, and gives you a much clearer view of your performance. Getting data in other ways If you’re using Google Analytics frequently, with any large site you’ll come to a couple of conclusions: Doing any kind of practical comparative analysis is unwieldy. Boy, Google Analytics is slow! As you work with bigger datasets and put together more complex queries, you’ll see the loading graphic more than you’ll see actual data. So when you reach that level, there are ways to completely bypass the Google Analytics interface altogether, and get data into your own spreadsheet application for manipulation. Data Feed Query Explorer If you just want to pull down some quick statistics but still use complex filters and exotic metric and dimension combinations, the Data Feed Query Explorer is the quickest way of doing so. Authenticate with your Google Analytics account, select a profile, and you can start selecting metrics and dimensions to be generated in a handy, selectable tabulated format. Google Analytics API If you’re feeling clever, you can bypass having to copy and paste data by pulling in directly into Excel, Google Docs or your own application using the Google Analytics API. There are several scripts and plugins available to do this. I use Automate Analytics Google Docs code (there’s also a paid version that simplifies setup and creates some handy reports for you). New shiny things Well, now that that’s over, I can show you some cool stuff. Well, at least it’s cool to me. Google Analytics is being constantly improved and new functionality is introduced nearly every month. Here are a couple of my favourites. Multichannel attribution Not every visitor converts on your site on the first visit. They may not even do so on the second visit, or third. If they convert on the fourth visit, but each time they visit they do so via a different channel (for example, Search PPC, Search Organic, Direct, Email), which channel do you attribute the conversion to? The last channel, or the first? Dilemma! Google now has a Multichannel Attribution report, available in the Conversion category, which shows how each channel assists in converting, the overlap between channels, and where in the process that channel was important. For example, you may have analysed your blog traffic from Twitter and become disheartened that not many people were subscribing after visiting from Twitter links, but instead your high-value subscribers were coming from natural search. On the face of it, you’d spend less time tweeting, but a multichannel report may tell you that visitors first arrived via a Twitter link and didn’t subscribe, but then came back later after searching for your blog name on Google, after which they did. Don’t pack Twitter in yet! Visitor and goal flow Visitor and goal flow are amazing reports that help you visualize the flow of traffic through your site and, ultimately, into your checkout funnel or similar goal path. Flow reports are perfect for understanding drop-off points in your process, as well as what the big draws are on each page. Previously, if you wanted to visualize this data you had to set up several abstracted microgoals and chain them together in custom reports. Frankly, it was a pain in the arse and burned through your precious and limited goal allocation. Visitor flow bypasses all that and produces the report in an interactive flow diagram. While it doesn’t show you the holy grail of conversion likelihood by each path, you can segment visitor flow so that you can see very specifically how different segments of your visitor base behave. Go play with it now! 2011 Matt Curry mattcurry 2011-12-18T00:00:00+00:00 https://24ways.org/2011/getting-the-most-out-of-google-analytics/ business
328 Swooshy Curly Quotes Without Images The problem Take a quote and render it within blockquote tags, applying big, funky and stylish curly quotes both at the beginning and the end without using any images – at all. The traditional way Feint background images under the text, or an image in the markup housed in a little float. Often designers only use the opening curly quote as it’s just too difficult to float a closing one. Why is the traditional way bad? Well, for a start there are no actual curly quotes in the text (unless you’re doing some nifty image replacement). Thus with CSS disabled you’ll only have default blockquote styling to fall back on. Secondly, images don’t resize, so scaling text will have no affect on your graphic curlies. The solution Use really big text. Then it can be resized by the browser, resized using CSS, and even be restyled with a new font style if you fancy it. It’ll also make sense when CSS is unavailable. The problem Creating “Drop Caps” with CSS has been around for a while (Big Dan Cederholm discusses a neat solution in that first book of his), but drop caps are normal characters – the A to Z or 1 to 10 – and these can all be pulled into a set space and do not serve up a ton of whitespace, unlike punctuation characters. Curly quotes aren’t like traditional characters. Like full stops, commas and hashes they float within the character space and leave lots of dead white space, making it bloody difficult to manipulate them with CSS. Styles generally fit around text, so cutting into that character is tricky indeed. Also, all that extra white space is going to push into the quote text and make it look pretty uneven. This grab highlights the actual character space: See how this is emphasized when we add a normal alphabetical character within the span. This is what we’re dealing with here: Then, there’s size. Call in a curly quote at less than 300% font-size and it ain’t gonna look very big. The white space it creates will be big enough, but the curlies will be way too small. We need more like 700% (as in this example) to make an impression, but that sure makes for a big character space. Prepare the curlies Firstly, remove the opening “ from the quote. Replace it with the opening curly quote character entity “. Then replace the closing “ with the entity reference for that, which is ”. Now at least the curlies will look nice and swooshy. Add the hooks Two reasons why we aren’t using :first-letter pseudo class to manipulate the curlies. Firstly, only CSS2-friendly browsers would get what we’re doing, and secondly we need to affect the last “letter” of our text also – the closing curly quote. So, add a span around the opening curly, and a second span around the closing curly, giving complete control of the characters: <blockquote><span class="bqstart">“</span>Speech marks. Curly quotes. That annoying thing cool people do with their fingers to emphasize a buzzword, shortly before you hit them.<span class="bqend">”</span></blockquote> So far nothing will look any different, aside form the curlies looking a bit nicer. I know we’ve just added extra markup, but the benefits as far as accessibility are concerned are good enough for me, and of course there are no images to download. The CSS OK, easy stuff first. Our first rule .bqstart floats the span left, changes the color, and whacks the font-size up to an exuberant 700%. Our second rule .bqend does the same tricks aside from floating the curly to the right. .bqstart { float: left; font-size: 700%; color: #FF0000; } .bqend { float: right; font-size: 700%; color: #FF0000; } That gives us this, which is rubbish. I’ve highlighted the actual span area with outlines: Note that the curlies don’t even fit inside the span! At this stage on IE 6 PC you won’t even see the quotes, as it only places focus on what it thinks is in the div. Also, the quote text is getting all spangled. Fiddle with margin and padding Think of that span outline box as a window, and that you need to position the curlies within that window in order to see them. By adding some small adjustments to the margin and padding it’s possible to position the curlies exactly where you want them, and remove the excess white space by defining a height: .bqstart { float: left; height: 45px; margin-top: -20px; padding-top: 45px; margin-bottom: -50px; font-size: 700%; color: #FF0000; } .bqend { float: right; height: 25px; margin-top: 0px; padding-top: 45px; font-size: 700%; color: #FF0000; } I wanted the blocks of my curlies to align with the quote text, whereas you may want them to dig in or stick out more. Be aware however that my positioning works for IE PC and Mac, Firefox and Safari. Too much tweaking seems to break the magic in various browsers at various times. Now things are fitting beautifully: I must admit that the heights, margins and spacing don’t make a lot of sense if you analyze them. This was a real trial and error job. Get it working on Safari, and IE would fail. Sort IE, and Firefox would go weird. Finished The final thing looks ace, can be resized, looks cool without styles, and can be edited with CSS at any time. Here’s a real example (note that I’m specifying Lucida Grande and then Verdana for my curlies): “Speech marks. Curly quotes. That annoying thing cool people do with their fingers to emphasize a buzzword, shortly before you hit them.” Browsers happy As I said, too much tweaking of margins and padding can break the effect in some browsers. Even now, Firefox insists on dropping the closing curly by approximately 6 or 7 pixels, and if I adjust the padding for that, it’ll crush it into the text on Safari or IE. Weird. Still, as I close now it seems solid through resizing tests on Safari, Firefox, Camino, Opera and IE PC and Mac. Lovely. It’s probably not perfect, but together we can beat the evil typographic limitations of the web and walk together towards a brighter, more aligned world. Merry Christmas. 2005 Simon Collison simoncollison 2005-12-21T00:00:00+00:00 https://24ways.org/2005/swooshy-curly-quotes-without-images/ business
8 Coding Towards Accessibility “Can we make it AAA-compliant?” – does this question strike fear into your heart? Maybe for no other reason than because you will soon have to wade through the impenetrable WCAG documentation once again, to find out exactly what AAA-compliant means? I’m not here to talk about that. The Web Content Accessibility Guidelines are a comprehensive and peer-reviewed resource which we’re lucky to have at our fingertips. But they are also a pig to read, and they may have contributed to the sense of mystery and dread with which some developers associate the word accessibility. This Christmas, I want to share with you some thoughts and some practical tips for building accessible interfaces which you can start using today, without having to do a ton of reading or changing your tools and workflow. But first, let’s clear up a couple of misconceptions. Dreary, flat experiences I recently built a front-end framework for the Post Office. This was a great gig for a developer, but when I found out about my client’s stringent accessibility requirements I was concerned that I’d have to scale back what was quite a complex set of visual designs. Sites like Jakob Neilsen’s old workhorse useit.com and even the pioneering GOV.UK may have to shoulder some of the blame for this. They put a premium on usability and accessibility over visual flourish. (Although, in fairness to Mr Neilsen, his new site nngroup.com is really quite a snazzy affair, comparatively.) Of course, there are other reasons for these sites’ aesthetics — and it’s not because of the limitations of the form. You can make an accessible site look as glossy or as plain as you want it to look. It’s always our own ingenuity and attention to detail that are going to be the limiting factors. Synecdoche We must always guard against the tendency to assume that catering to screen readers means we have the whole accessibility ballgame covered. There’s so much more to accessibility than assistive technology, as you know. And within the field of assistive technology there are plenty of other devices for us to consider. Planning to accommodate all these users and devices can be daunting. When I first started working in this field I thought that the breadth of technology was prohibitive. I didn’t even know what a screen reader looked like. (I assumed they were big and heavy, perhaps like an old typewriter, and certainly they would be expensive and difficult to fathom.) This is nonsense, of course. Screen reader emulators are readily available as browser extensions and can be activated in seconds. Chromevox and Fangs are both excellent and you should download one or the other right now. But the really good news is that you can emulate many other types of assistive technology without downloading a byte. And this is where we move from misconceptions into some (hopefully) useful advice. The mouse trap The simplest and most effective way to improve your abilities as a developer of accessible interfaces is to unplug your mouse. Keyboard operation has its own WCAG chapter, because most users of assistive technology are navigating the web using only their keyboards. You can go some way towards putting yourself into their shoes so easily — just by ditching a peripheral. Learning this was a lightbulb moment for me. When I build interfaces I am constantly flicking between code and the browser, testing or viewing the changes I have made. Now, instead of checking a new element once, I check it twice: once with my mouse and then again without. Don’t just :hover The reality is that when you first start doing this you can find your site becomes unusable straightaway. It’s easy to lose track of which element is in focus as you hit the tab key repeatedly. One of the easiest changes you can make to your coding practice is to add :focus and :active pseudo-classes to every hover state that you write. I’m still amazed at how many sites fail to provide a decent focus state for links (and despite previous 24 ways authors in 2007 and 2009 writing on this same issue!). You may find that in some cases it makes sense to have something other than, or in addition to, the hover state on focus, but start with the hover state that your designer has taken the time to provide you with. It’s a tiny change and there is no downside. So instead of this: .my-cool-link:hover { background-color: MistyRose ; } …try writing this: .my-cool-link:hover, .my-cool-link:focus, .my-cool-link:active { background-color: MistyRose ; } I’ve toyed with the idea of making a Sass mixin to take care of this for me, but I haven’t yet. I worry that people reading my code won’t see that I’m explicitly defining my focus and active states so I take the hit and write my hover rules out longhand. JavaScript can play, too This was another revelation for me. Keyboard-only navigation doesn’t necessitate a JavaScript-free experience, and up-to-date screen readers can execute JavaScript. So we’re able to create complex JavaScript-driven interfaces which all users can interact with. Some of the hard work has already been done for us. First, there are already conventions around keyboard-driven interfaces. Think about the last time you viewed a photo album on Facebook. You can use the arrow keys to switch between photos, and the escape key closes whichever lightbox-y UI thing Facebook is showing its photos in this week. Arrow keys (up/down as well as left/right) for progression through content; Escape to back out of something; Enter or space bar to indicate a positive intention — these are established keyboard conventions which we can apply to our interfaces to improve their accessiblity. Of course, by doing so we are improving our interfaces in general, giving all users the option to switch between keyboard and mouse actions as and when it suits them. Second, this guy wants to help you out. Hans Hillen is a developer who has done a great deal of work around accessibility and JavaScript-powered interfaces. Along with The Paciello Group he has created a version of the jQuery UI library which has been fully optimised for keyboard navigation and screen reader use. It’s a fantastic reference which I revisit all the time I’m not a huge fan of the jQuery UI library. It’s a pain to style and the code is a bit bloated. So I’ve not used this demo as a code resource to copy wholesale. I use it by playing with the various components and seeing how they react to keyboard controls. Each component is also fully marked up with the relevant ARIA roles to improve screen reader announcement where possible (more on this below). Coding for accessibility promotes good habits This is a another observation around accessibility and JavaScript. I noticed an improvement in the structure and abstraction of my code when I started adding keyboard controls to my interface elements. Your code has to become more modular and event-driven, because any number of events could trigger the same interaction. A mouse-click, the Enter key and the space bar could all conceivably trigger the same open function on a collapsed accordion element. (And you want to keep things DRY, don’t you?) If you aren’t already in the habit of separating out your interface functionality into discrete functions, you will be soon. var doSomethingCool = function(){ // Do something cool here. } // Bind function to a button click - pretty vanilla $('.myCoolButton').on('click', function(){ doSomethingCool(); return false; }); // Bind the same function to a range of keypresses $(document).keyup(function(e){ switch(e.keyCode) { case 13: // enter case 32: // spacebar doSomethingCool(); break; case 27: // escape doSomethingElse(); break; } }); To be honest, if you’re doing complex UI stuff with JavaScript these days, or if you’ve been building any responsive interfaces which rely on JavaScript, then you are most likely working with an application framework such as Backbone, Angular or Ember, so an abstraced and event-driven application structure will be familar to you. It should be super easy for you to start helping out your keyboard-only users if you aren’t already — just add a few more event bindings into your UI layer! Manipulating the tab order So, you’ve adjusted your mindset and now you test every change to your codebase using a keyboard as well as a mouse. You’ve applied all your hover states to :focus and :active so you can see where you’re tabbing on the page, and your interactive components react seamlessly to a mixture of mouse and keyboard commands. Feels good, right? There’s another level of optimisation to consider: manipulating the tab order. Certain DOM elements are naturally part of the tab order, and others are excluded. Links and input elements are the main elements included in the tab order, and static elements like paragraphs and headings are excluded. What if you want to make a static element ‘tabbable’? A good example would be in an expandable accordion component. Each section of the accordion should be separated by a heading, and there’s no reason to make that heading into a link simply because it’s interactive. <div class="accordion-widget"> <h3>Tyrannosaurus</h3> <p>Tyrannosaurus; meaning "tyrant lizard"...<p> <h3>Utahraptor</h3> <p>Utahraptor is a genus of theropod dinosaurs...<p> <h3>Dromiceiomimus</h3> <p>Ornithomimus is a genus of ornithomimid dinosaurs...<p> </div> Adding the heading elements to the tab order is trivial. We just set their tabindex attribute to zero. You could do this on the server or the client. I prefer to do it with JavaScript as part of the accordion setup and initialisation process. $('.accordion-widget h3').attr('tabindex', '0'); You can apply this trick in reverse and take elements out of the tab order by setting their tabindex attribute to −1, or change the tab order completely by using other integers. This should be done with great care, if at all. You have to be sure that the markup you remove from the tab order comes out because it genuinely improves the keyboard interaction experience. This is hard to validate without user testing. The danger is that developers will try to sweep complicated parts of the UI under the carpet by taking them out of the tab order. This would be considered a dark pattern — at least on my team! A farewell ARIA This is where things can get complex, and I’m no expert on the ARIA specification: I feel like I’ve only dipped my toe into this aspect of coding for accessibility. But, as with WCAG, I’d like to demystify things a little bit to encourage you to look into this area further yourself. ARIA roles are of most benefit to screen reader users, because they modify and augment screen reader announcements. Let’s take our dinosaur accordion from the previous section. The markup is semantic, so a screen reader that can’t handle JavaScript will announce all the content within the accordion, no problem. But modern screen readers can deal with JavaScript, and this means that all the lovely dino information beneath each heading has probably been hidden on document.ready, when the accordion initialised. It might have been hidden using display:none, which prevents a screen reader from announcing content. If that’s as far as you have gone, then you’ve committed an accessibility sin by hiding content from screen readers. Your user will hear a set of headings being announced, with no content in between. It would sound something like this if you were using Chromevox: > Tyrannosaurus. Heading Three. > Utahraptor. Heading Three. > Dromiceiomimus. Heading Three. We can add some ARIA magic to the markup to improve this, using the tablist role. Start by adding a role of tablist to the widget, and roles of tab and tabpanel to the headings and paragraphs respectively. Set boolean values for aria-selected, aria-hidden and aria-expanded. The markup could end up looking something like this. <div class="accordion-widget" role="tablist"> <!-- T-rex --> <h3 role="tab" tabindex="0" id="tab-2" aria-controls="panel-2" aria-selected="false">Utahraptor</h3> <p role="tabpanel" id="panel-2" aria-labelledby="tab-2" aria-expanded="false" aria-hidden="true">Utahraptor is a genus of theropod dinosaurs...</p> <!-- Dromiceiomimus --> </div> Now, if a screen reader user encounters this markup they will hear the following: > Tyrannosaurus. Tab not selected; one of three. > Utahraptor. Tab not selected; two of three. > Dromiceiomimus. Tab not selected; three of three. You could add arrow key events to help the user browse up and down the tab list items until they find one they like. Your accordion open() function should update the ARIA boolean values as well as adding whatever classes and animations you have built in as standard. Your users know that unselected tabs are meant to be interacted with, so if a user triggers the open function (say, by hitting Enter or the space bar on the second item) they will hear this: > Utahraptor. Selected; two of three. The paragraph element for the expanded item will not be hidden by your CSS, which means it will be announced as normal by the screen reader. This kind of thing makes so much more sense when you have a working example to play with. Again, I refer you to the fantastic resource that Hans Hillen has put together: this is his take on an accessible accordion, on which much of my example is based. Conclusion Getting complex interfaces right for all of your users can be difficult — there’s no point pretending otherwise. And there’s no substitute for user testing with real users who navigate the web using assistive technology every day. This kind of testing can be time-consuming to recruit for and to conduct. On top of this, we now have accessibility on mobile devices to contend with. That’s a huge area in itself, and it’s one which I have not yet had a chance to research properly. So, there’s lots to learn, and there’s lots to do to get it right. But don’t be disheartened. If you have read this far then I’ll leave you with one final piece of advice: don’t wait. Don’t wait until you’re building a site which mandates AAA-compliance to try this stuff out. Don’t wait for a client with the will or the budget to conduct the full spectrum of user testing to come along. Unplug your mouse, and start playing with your interfaces in a new way. You’ll be surprised at the things that you learn and the issues you uncover. And the next time an true accessibility project comes along, you will be way ahead of the game. 2013 Charlie Perrins charlieperrins 2013-12-03T00:00:00+00:00 https://24ways.org/2013/coding-towards-accessibility/ code
16 URL Rewriting for the Fearful I think it was Marilyn Monroe who said, “If you can’t handle me at my worst, please just fix these rewrite rules, I’m getting an internal server error.” Even the blonde bombshell hated configuring URL rewrites on her website, and I think most of us know where she was coming from. The majority of website projects I work on require some amount of URL rewriting, and I find it mildly enjoyable — I quite like a good rewrite rule. I suspect you may not share my glee, so in this article we’re going to go back to basics to try to make the whole rigmarole more understandable. When we think about URL rewriting, usually that means adding some rules to an .htaccess file for an Apache web server. As that’s the most common case, that’s what I’ll be sticking to here. If you work with a different server, there’s often documentation specifically for translating from Apache’s mod_rewrite rules. I even found an automatic converter for nginx. This isn’t going to be a comprehensive guide to every URL rewriting problem you might ever have. That would take us until Christmas. If you consider yourself a trial-and-error dabbler in the HTTP 500-infested waters of URL rewriting, then hopefully this will provide a little bit more of a basis to help you figure out what you’re doing. If you’ve ever found yourself staring at the white screen of death after screwing up your .htaccess file, don’t worry. As Michael Jackson once insipidly whined, you are not alone. The basics Rewrite rules form part of the Apache web server’s configuration for a website, and can be placed in a number of different locations as part of your virtual host configuration. By far the simplest and most portable option is to use an .htaccess file in your website root. Provided your server has mod_rewrite available, all you need to do to kick things off in your .htaccess file is: RewriteEngine on The general formula for a rewrite rule is: RewriteRule URL/to/match URL/to/use/if/it/matches [options] When we talk about URL rewriting, we’re normally talking about one of two things: redirecting the browser to a different URL; or rewriting the URL internally to use a particular file. We’ll look at those in turn. Redirects Redirects match an incoming URL, and then redirect the user’s browser to a different address. These can be useful for maintaining legacy URLs if content changes location as part of a site redesign. Redirecting the old URL to the new location makes sure that any incoming links, such as those from search engines, continue to work. In 1998, Sir Tim Berners-Lee wrote that Cool URIs don’t change, encouraging us all to go the extra mile to make sure links keep working forever. I think that sometimes it’s fine to move things around — especially to correct bad URL design choices of the past — provided that you can do so while keeping those old URLs working. That’s where redirects can help. A redirect might look like this RewriteRule ^article/used/to/be/here.php$ /article/now/lives/here/ [R=301,L] Rewriting By default, web servers closely map page URLs to the files in your site. On receiving a request for http://example.com/about/history.html the server goes to the configured folder for the example.com website, and then goes into the about folder and returns the history.html file. A rewrite rule changes that process by breaking the direct relationship between the URL and the file system. “When there’s a request for /about/history.html” a rewrite rule might say, “use the file /about_section.php instead.” This opens up lots of possibilities for creative ways to map URLs to the files that know how to serve up the page. Most MVC frameworks will have a single rule to rewrite all page URLs to one single file. That file will be a script which kicks off the framework to figure out what to do to serve the page. RewriteRule ^for/this/url/$ /use/this/file.php [L] Matching patterns By now you’ll have noted the weird ^ and $ characters wrapped around the URL we’re trying to match. That’s because what we’re actually using here is a pattern. Technically, it is what’s called a Perl Compatible Regular Expression (PCRE) or simply a regex or regexp. We’ll call it a pattern because we’re not animals. What are these patterns? If I asked you to enter your credit card expiry date as MM/YY then chances are you’d wonder what I wanted your credit card details for, but you’d know that I wanted a two-digit month, a slash, and a two-digit year. That’s not a regular expression, but it’s the same idea: using some placeholder characters to define the pattern of the input you’re trying to match. We’ve already met two regexp characters. ^ Matches the beginning of a string $ Matches the end of a string When a pattern starts with ^ and ends with $ it’s to make sure we match the complete URL start to finish, not just part of it. There are lots of other ways to match, too: [0-9] Matches a number, 0–9. [2-4] would match numbers 2 to 4 inclusive. [a-z] Matches lowercase letters a–z [A-Z] Matches uppercase letters A–Z [a-z0-9] Combining some of these, this matches letters a–z and numbers 0–9 These are what we call character groups. The square brackets basically tell the server to match from the selection of characters within them. You can put any specific characters you’re looking for within the brackets, as well as the ranges shown above. However, all these just match one single character. [0-9] would match 8 but not 84 — to match 84 we’d need to use [0-9] twice. [0-9][0-9] So, if we wanted to match 1984 we could to do this: [0-9][0-9][0-9][0-9] …but that’s getting silly. Instead, we can do this: [0-9]{4} That means any character between 0 and 9, four times. If we wanted to match a number, but didn’t know how long it might be (for example, a database ID in the URL) we could use the + symbol, which means one or more. [0-9]+ This now matches 1, 123 and 1234567. Putting it into practice Let’s say we need to write a rule to match article URLs for this website, and to rewrite them to use /article.php under the hood. The articles all have URLs like this: 2013/article-title/ They start with a year (from 2005 up to 2013, currently), a slash, and then have a URL-safe version of the article title (a slug), ending in a slash. We’d match it like this: ^[0-9]{4}/[a-z0-9-]+/$ If that looks frightening, don’t worry. Breaking it down, from the start of the URL (^) we’re looking for four numbers ([0-9]{4}). Then a slash — that’s just literal — and then anything lowercase a–z or 0–9 or a dash ([a-z0-9-]) one or more times (+), ending in a slash (/$). Putting that into a rewrite rule, we end up with this: RewriteRule ^[0-9]{4}/[a-z0-9-]+/$ /article.php We’re getting close now. We can match the article URLs and rewrite them to use article.php. Now we just need to make sure that article.php knows which article it’s supposed to display. Capturing groups, and replacements When rewriting URLs you’ll often want to take important parts of the URL you’re matching and pass them along to the script that handles the request. That’s usually done by adding those parts of the URL on as query string arguments. For our example, we want to make sure that article.php knows the year and the article title we’re looking for. That means we need to call it like this: /article.php?year=2013&slug=article-title To do this, we need to mark which parts of the pattern we want to reuse in the destination. We do this with round brackets or parentheses. By placing parentheses around parts of the pattern we want to reuse, we create what’s called a capturing group. To capture an important part of the source URL to use in the destination, surround it in parentheses. Our pattern now looks like this, with parentheses around the parts that match the year and slug, but ignoring the slashes: ^([0-9]{4})/([a-z0-9-]+)/$ To use the capturing groups in the destination URL, we use the dollar sign and the number of the group we want to use. So, the first capturing group is $1, the second is $2 and so on. (The $ is unrelated to the end-of-pattern $ we used before.) RewriteRule ^([0-9]{4})/([a-z0-9-]+)/$ /article.php?year=$1&slug=$2 The value of the year capturing group gets used as $1 and the article title slug is $2. Had there been a third group, that would be $3 and so on. In regexp parlance, these are called back-references as they refer back to the pattern. Options Several brain-taxing minutes ago, I mentioned some options as the final part of a rewrite rule. There are lots of options (or flags) you can set to change how the rule is processed. The most useful (to my mind) are: R=301 Perform an HTTP 301 redirect to send the user’s browser to the new URL. A status of 301 means a resource has moved permanently and so it’s a good way of both redirecting the user to the new URL, and letting search engines know to update their indexes. L Last. If this rule matches, don’t bother processing the following rules. Options are set in square brackets at the end of the rule. You can set multiple options by separating them with commas: RewriteRule ^([0-9]{4})/([a-z0-9-]+)/$ /article.php?year=$1&slug=$2 [L] or RewriteRule ^about/([a-z0-9-]+).jsp/$ /about/$1/ [R=301,L] Common pitfalls Once you’ve built up a few rewrite rules, things can start to go wrong. You may have been there: a rule which looks perfectly good is somehow not matching. One common reason for this is hidden behind that [L] flag. L for Last is a useful option to tell the rewrite engine to stop once the rule has been matched. This is what it does — the remaining rules in the .htaccess file are then ignored. However, once a URL has been rewritten, the entire set of rules are then run again on the new URL. If the new URL matches any of the rules, that too will be rewritten and on it goes. One way to avoid this problem is to keep your ‘real’ pages under a folder path that will never match one of your rules, or that you can exclude from the rewrite rules. Useful snippets I find myself reusing the same few rules over and over again, just with minor changes. Here are some useful examples to refer back to. Excluding a directory As mentioned above, if you’re rewriting lots of fancy URLs to a collection of real files it can be helpful to put those files in a folder and exclude it from rewrite rules. This helps solve the issue of rewrite rules reapplying to your newly rewritten URL. To exclude a directory, put a rule like this at the top of your file, before your other rules. Our files are in a folder called _source, the dash in the rule means do nothing, and the L flag means the following rules won’t be applied. RewriteRule ^_source - [L] This is also useful for excluding things like CMS folders from your website’s rewrite rules RewriteRule ^perch - [L] Adding or removing www from the domain Some folk like to use a www and others don’t. Usually, it’s best to pick one and go with it, and redirect the one you don’t want. On this site, we don’t use www.24ways.org so we redirect those requests to 24ways.org. This uses a RewriteCond which is like an if for a rewrite rule: “If this condition matches, then apply the following rule.” In this case, it’s if the HTTP HOST (or domain name, basically) matches this pattern, then redirect everything: RewriteCond %{HTTP_HOST} ^www.24ways.org$ [NC] RewriteRule ^(.*)$ http://24ways.org/$1 [R=301,L] The [NC] flag means ‘no case’ — the match is case-insensitive. The dots in the domain are escaped with a backslash, as a dot is a regular expression character which means match anything, so we escape it because we literally mean a dot in this instance. Removing file extensions Sometimes all you need to do to tidy up a URL is strip off the technology-specific file extension, so that /about/history.php becomes /about/history. This is easily achieved with the help of some more rewrite conditions. RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_FILENAME}.php -f RewriteRule ^(.+)$ $1.php [L,QSA] This says if the file being asked for isn’t a file (!-f) and if it isn’t a directory (!-d) and if the file name plus .php is an actual file (-f) then rewrite by adding .php on the end. The QSA flag means ‘query string append’: append the existing query string onto the rewritten URL. It’s these sorts of more generic catch-all rules that you need to watch out for when your .htaccess gets rerun after a successful match. Without care they can easily rematch the newly rewritten URL. Logging for when it all goes wrong Although not possible within your .htaccess file, if you have access to your Apache configuration files you can enable rewrite logging. This can be useful to track down where a rule is going wrong, if it’s matching incorrectly or failing to match. It also gives you an overview of the amount of work being done by the rewrite engine, enabling you to rearrange your rules and maximise performance. RewriteEngine On RewriteLog "/full/system/path/to/rewrite.log" RewriteLogLevel 5 To be doubly clear: this will not work from an .htaccess file — it needs to be added to the main Apache configuration files. (I sometimes work using MAMP PRO locally on my Mac, and this can be pasted into the snappily named Customized virtual host general settings box in the Advanced tab for your site.) The white screen of death One of the most frustrating things when working with rewrite rules is that when you make a mistake it can result in the server returning an HTTP 500 Internal Server Error. This in itself isn’t an error message, of course. It’s more of a notification that an error has occurred. The real error message can usually be found in your Apache error log. If you have access to your server logs, check the Apache error log and you’ll usually find a much more descriptive error message, pointing you towards your mistake. (Again, if using MAMP PRO, go to Server, Apache and the View Log button.) In conclusion Rewriting URLs can be a bear, but the advantages are clear. Keeping a tidy URL structure, disconnected from the technology or file structure of your site can result in URLs that are easier to use and easier to maintain into the future. If you’re redesigning a site, remember that cool URIs don’t change, so budget some time to make sure that any content you move has a rewrite rule associated with it to keep any links working. Further reading To find out more about URL rewriting and perhaps even learn more about regular expressions, I can recommend the following resources. From the horse’s mouth, the Apache mod_rewrite documentation Particularly useful with that documentation is the RewriteRule Flags listing You may wish to don sunglasses to follow the otherwise comprehensive Regular-Expressions.info tutorial Friend of 24 ways, Neil Crosby has a mod_rewrite Beginner’s Guide which I’ve found handy over the years. As noted at the start, this isn’t a fully comprehensive guide, but I hope it’s useful in finding your feet with a powerful but sometimes annoying technology. Do you have useful snippets you often use on projects? Feel free to share them in the comments. 2013 Drew McLellan drewmclellan 2013-12-01T00:00:00+00:00 https://24ways.org/2013/url-rewriting-for-the-fearful/ code
20 Make Your Browser Dance It was a crisp winter’s evening when I pulled up alongside the pier. I stepped out of my car and the bitterly cold sea air hit my face. I walked around to the boot, opened it and heaved out a heavy flight case. I slammed the boot shut, locked the car and started walking towards the venue. This was it. My first gig. I thought about all those weeks of preparation: editing video clips, creating 3-D objects, making coloured patterns, then importing them all into software and configuring effects to change as the music did; targeting frequency, beat, velocity, modifying size, colour, starting point; creating playlists of these… and working out ways to mix them as the music played. This was it. This was me VJing. This was all a lifetime (well a decade!) ago. When I started web designing, VJing took a back seat. I was more interested in interactive layouts, semantic accessible HTML, learning all the IE bugs and mastering the quirks that CSS has to offer. More recently, I have been excited by background gradients, 3-D transforms, the @keyframe directive, as well as new APIs such as getUserMedia, indexedDB, the Web Audio API But wait, have I just come full circle? Could it be possible, with these wonderful new things in technologies I am already familiar with, that I could VJ again, right here, in a browser? Well, there’s only one thing to do: let’s try it! Let’s take to the dance floor Over the past couple of years working in The Lab I have learned to take a much more iterative approach to projects than before. One of my new favourite methods of working is to create a proof of concept to make sure my theory is feasible, before going on to create a full-blown product. So let’s take the same approach here. The main VJing functionality I want to recreate is manipulating visuals in relation to sound. So for my POC I need to create a visual, with parameters that can be changed, then get some sound and see if I can analyse that sound to detect some data, which I can then use to manipulate the visual parameters. Easy, right? So, let’s start at the beginning: creating a simple visual. For this I’m going to create a CSS animation. It’s just a funky i element with the opacity being changed to make it flash. See the Pen Creating a light by Rumyra (@Rumyra) on CodePen A note about prefixes: I’ve left them out of the code examples in this post to make them easier to read. Please be aware that you may need them. I find a great resource to find out if you do is caniuse.com. You can also check out all the code for the examples in this article Start the music Well, that’s pretty easy so far. Next up: loading in some sound. For this we’ll use the Web Audio API. The Web Audio API is based around the concept of nodes. You have a source node: the sound you are loading in; a destination node: usually the device’s speakers; and any number of processing nodes in between. All this processing that goes on with the audio is sandboxed within the AudioContext. So, let’s start by initialising our audio context. var contextClass = window.AudioContext; if (contextClass) { //web audio api available. var audioContext = new contextClass(); } else { //web audio api unavailable //warn user to upgrade/change browser } Now let’s load our sound file into the new context we created with an XMLHttpRequest. function loadSound() { //set audio file url var audioFileUrl = '/octave.ogg'; //create new request var request = new XMLHttpRequest(); request.open("GET", audioFileUrl, true); request.responseType = "arraybuffer"; request.onload = function() { //take from http request and decode into buffer context.decodeAudioData(request.response, function(buffer) { audioBuffer = buffer; }); } request.send(); } Phew! Now we’ve loaded in some sound! There are plenty of things we can do with the Web Audio API: increase volume; add filters; spatialisation. If you want to dig deeper, the O’Reilly Web Audio API book by Boris Smus is available to read online free. All we really want to do for this proof of concept, however, is analyse the sound data. To do this we really need to know what data we have. Learning the steps Let’s take a minute to step back and remember our school days and science class. I’m sure if I drew a picture of a sound wave, we would all start nodding our heads. The sound you hear is caused by pressure differences in the particles in the air. Sound pushes these particles together, causing vibrations. Amplitude is basically strength of pressure. A simple example of change of amplitude is when you increase the volume on your stereo and the output wave increases in size. This is great when everything is analogue, but the waveform varies continuously and it’s not suitable for digital processing: there’s an infinite set of values. For digital processing, we need discrete numbers. We have to sample the waveform at set time intervals, and record data such as amplitude and frequency. Luckily for us, just the fact we have a digital sound file means all this hard work is done for us. What we’re doing in the code above is piping that data in the audio context. All we need to do now is access it. We can do this with the Web Audio API’s analysing functionality. Just pop in an analysing node before we connect the source to its destination node. function createAnalyser(source) { //create analyser node analyser = audioContext.createAnalyser(); //connect to source source.connect(analyzer); //pipe to speakers analyser.connect(audioContext.destination); } The data I’m really interested in here is frequency. Later we could look into amplitude or time, but for now I’m going to stick with frequency. The analyser node gives us frequency data via the getFrequencyByteData method. Don’t forget to count! To collect the data from the getFrequencyByteData method, we need to pass in an empty array (a JavaScript typed array is ideal). But how do we know how many items the array will need when we create it? This is really up to us and how high the resolution of frequencies we want to analyse is. Remember we talked about sampling the waveform; this happens at a certain rate (sample rate) which you can find out via the audio context’s sampleRate attribute. This is good to bear in mind when you’re thinking about your resolution of frequencies. var sampleRate = audioContext.sampleRate; Let’s say your file sample rate is 48,000, making the maximum frequency in the file 24,000Hz (thanks to a wonderful theorem from Dr Harry Nyquist, the maximum frequency in the file is always half the sample rate). The analyser array we’re creating will contain frequencies up to this point. This is ideal as the human ear hears the range 0–20,000hz. So, if we create an array which has 2,400 items, each frequency recorded will be 10Hz apart. However, we are going to create an array which is half the size of the FFT (fast Fourier transform), which in this case is 2,048 which is the default. You can set it via the fftSize property. //set our FFT size analyzer.fftSize = 2048; //create an empty array with 1024 items var frequencyData = new Uint8Array(1024); So, with an array of 1,024 items, and a frequency range of 24,000Hz, we know each item is 24,000 ÷ 1,024 = 23.44Hz apart. The thing is, we also want that array to be updated constantly. We could use the setInterval or setTimeout methods for this; however, I prefer the new and shiny requestAnimationFrame. function update() { //constantly getting feedback from data requestAnimationFrame(update); analyzer.getByteFrequencyData(frequencyData); } Putting it all together Sweet sticks! Now we have an array of frequencies from the sound we loaded, updating as the sound plays. Now we want that data to trigger our animation from earlier. We can easily pause and run our CSS animation from JavaScript: element.style.webkitAnimationPlayState = "paused"; element.style.webkitAnimationPlayState = "running"; Unfortunately, this may not be ideal as our animation might be a whole heap longer than just a flashing light. We may want to target specific points within that animation to have it stop and start in a visually pleasing way and perhaps not smack bang in the middle. There is no really easy way to do this at the moment as Zach Saucier explains in this wonderful article. It takes some jiggery pokery with setInterval to try to ascertain how far through the CSS animation you are in percentage terms. This seems a bit much for our proof of concept, so let’s backtrack a little. We know by the animation we’ve created which CSS properties we want to change. This is pretty easy to do directly with JavaScript. element.style.opacity = "1"; element.style.opacity = "0.2"; So let’s start putting it all together. For this example I want to trigger each light as a different frequency plays. For this, I’ll loop through the HTML elements and change the opacity style if the frequency gain goes over a certain threshold. //get light elements var lights = document.getElementsByTagName('i'); var totalLights = lights.length; for (var i=0; i<totalLights; i++) { //get frequencyData key var freqDataKey = i*8; //if gain is over threshold for that frequency animate light if (frequencyData[freqDataKey] > 160){ //start animation on element lights[i].style.opacity = "1"; } else { lights[i].style.opacity = "0.2"; } } See all the code in action here. I suggest viewing in a modern browser :) Awesome! It is true — we can VJ in our browser! Let’s dance! So, let’s start to expand this simple example. First, I feel the need to make lots of lights, rather than just a few. Also, maybe we should try a sound file more suited to gigs or clubs. Check it out! I don’t know about you, but I’m pretty excited — that’s just a bit of HTML, CSS and JavaScript! The other thing to think about, of course, is the sound that you would get at a venue. We don’t want to load sound from a file, but rather pick up on what is playing in real time. The easiest way to do this, I’ve found, is to capture what my laptop’s mic is picking up and piping that back into the audio context. We can do this by using getUserMedia. Let’s include this in this demo. If you make some noise while viewing the demo, the lights will start to flash. And relax :) There you have it. Sit back, play some music and enjoy the Winamp like experience in front of you. So, where do we go from here? I already have a wealth of ideas. We haven’t started with canvas, SVG or the 3-D features of CSS. There are other things we can detect from the audio as well. And yes, OK, it’s questionable whether the browser is the best environment for this. For one, I’m using a whole bunch of nonsensical HTML elements (maybe each animation could be held within a web component in the future). But hey, it’s fun, and it looks cool and sometimes I think it’s OK to just dance. 2013 Ruth John ruthjohn 2013-12-02T00:00:00+00:00 https://24ways.org/2013/make-your-browser-dance/ code
30 Making Sites More Responsive, Responsibly With digital projects we’re used to shifting our thinking to align with our target audience. We may undertake research, create personas, identify key tasks, or observe usage patterns, with our findings helping to refine our ongoing creations. A product’s overall experience can make or break its success, and when it comes to defining these experiences our development choices play a huge role alongside more traditional user-focused activities. The popularisation of responsive web design is a great example of how we are able to shape the web’s direction through using technology to provide better experiences. If we think back to the move from table-based layouts to CSS, initially our clients often didn’t know or care about the difference in these approaches, but we did. Responsive design was similar in this respect – momentum grew through the web industry choosing to use an approach that we felt would give a better experience, and which was more future-friendly.  We tend to think of responsive design as a means of displaying content appropriately across a range of devices, but the technology and our implementation of it can facilitate much more. A responsive layout not only helps your content work when the newest smartphone comes out, but it also ensures your layout suitably adapts if a visually impaired user drastically changes the size of the text. The 24 ways site at 400% on a Retina MacBook Pro displays a layout more typically used for small screens. When we think more broadly, we realise that our technical choices and approaches to implementation can have knock-on effects for the greater good, and beyond our initial target audiences. We can make our experiences more responsive to people’s needs, enhancing their usability and accessibility along the way. Being responsibly responsive Of course, when we think about being more responsive, there’s a fine line between creating useful functionality and becoming intrusive and overly complex. In the excellent Responsible Responsive Design, Scott Jehl states that: A responsible responsive design equally considers the following throughout a project: Usability: The way a website’s user interface is presented to the user, and how that UI responds to browsing conditions and user interactions. Access: The ability for users of all devices, browsers, and assistive technologies to access and understand a site’s features and content. Sustainability: The ability for the technology driving a site or application to work for devices that exist today and to continue to be usable and accessible to users, devices, and browsers in the future. Performance: The speed at which a site’s features and content are perceived to be delivered to the user and the efficiency with which they operate within the user interface. Scott’s book covers these ideas in a lot more detail than I’ll be able to here (put it on your Christmas list if it’s not there already), but for now let’s think a bit more about our roles as digital creators and the power this gives us. Our choices around technology and the decisions we have to make can be extremely wide-ranging. Solutions will vary hugely depending on the needs of each project, though we can further explore the concept of making our creations more responsive through the use of humble web technologies. The power of the web We all know that under the HTML5 umbrella are some great new capabilities, including a number of JavaScript APIs such as geolocation, web audio, the file API and many more. We often use these to enhance the functionality of our sites and apps, to add in new features, or to facilitate device-specific interactions. You’ll have seen articles with flashy titles such as “Top 5 JavaScript APIs You’ve Never Heard Of!”, which you’ll probably read, think “That’s quite cool”, yet never use in any real work. There is great potential for technologies like these to be misused, but there are also great prospects for them to be used well to enhance experiences. Let’s have a look at a few examples you may not have considered. Offline first When we make websites, many of us follow a process which involves user stories – standardised snippets of context explaining who needs what, and why. “As a student I want to pay online for my course so I don’t have to visit the college in person.” “As a retailer I want to generate unique product codes so I can manage my stock.” We very often focus heavily on what needs doing, but may not consider carefully how it will be done. As in Scott’s list, accessibility is extremely important, not only in terms of providing a great experience to users of assistive technologies, but also to make your creation more accessible in the general sense – including under different conditions. Offline first is yet another ‘first’ methodology (my personal favourite being ‘tea first’), which encourages us to develop so that connectivity itself is an enhancement – letting users continue with tasks even when they’re offline. Despite the rapid growth in public Wi-Fi, if we consider data costs and connectivity in developing countries, our travel habits with planes, underground trains and roaming (or simply if you live in the UK’s signal-barren East Anglian wilderness as I do), then you’ll realise that connectivity isn’t as ubiquitous as our internet-addled brains would make us believe. Take a scenario that I’m sure we’re all familiar with – the digital conference. Your venue may be in a city served by high-speed networks, but after overloading capacity with a full house of hashtag-hungry attendees, each carrying several devices, then everyone’s likely to be offline after all. Wouldn’t it be better if we could do something like this instead? Someone visits our conference website. On this initial run, some assets may be cached for future use: the conference schedule, the site’s CSS, photos of the speakers. When the attendee revisits the site on the day, the page shell loads up from the cache. If we have cached content (our session timetable, speaker photos or anything else), we can load it directly from the cache. We might then try to update this, or get some new content from the internet, but the conference attendee already has a base experience to use. If we don’t have something cached already, then we can try grabbing it online. If for any reason our requests for new content fail (we’re offline), then we can display a pre-cached error message from the initial load, perhaps providing our users with alternative suggestions from what is cached. There are a number of ways we can make something like this, including using the application cache (AppCache) if you’re that way inclined. However, you may want to look into service workers instead. There are also some great resources on Offline First! if you’d like to find out more about this. Building in offline functionality isn’t necessarily about starting offline first, and it’s also perfectly possible to retrofit sites and apps to catch offline scenarios, but this kind of graceful degradation can end up being more complex than if we’d considered it from the start. By treating connectivity as an enhancement, we can improve the experience and provide better performance than we can when waiting to counter failures. Our websites can respond to connectivity and usage scenarios, on top of adapting how we present our content. Thinking in this way can enhance each point in Scott’s criteria. As I mentioned, this isn’t necessarily the kind of development choice that our clients will ask us for, but it’s one we may decide is simply the right way to build based on our project, enhancing the experience we provide to people, and making it more responsive to their situation. Even more accessible We’ve looked at accessibility in terms of broadening when we can interact with a website, but what about how? Our user stories and personas are often of limited use. We refer in very general terms to students, retailers, and sometimes just users. What if we have a student whose needs are very different from another student? Can we make our sites even more usable and accessible through our development choices? Again using JavaScript to illustrate this concept, we can do a lot more with the ways people interact with our websites, and with the feedback we provide, than simply accepting keyboard, mouse and touch inputs and displaying output on a screen. Input Ambient light detection is one of those features that looks great in simple demos, but which we struggle to put to practical use. It’s not new – many satnav systems automatically change the contrast for driving at night or in tunnels, and our laptops may alter the screen brightness or keyboard backlighting to better adapt to our surroundings. Using web technologies we can adapt our presentation to be better suited to ambient light levels. If our device has an appropriate light sensor and runs a browser that supports the API, we can grab the ambient light in units using ambient light events, in JavaScript. We may then change our presentation based on different bandings, perhaps like this: window.addEventListener('devicelight', function(e) { var lux = e.value; if (lux < 50) { //Change things for dim light } if (lux >= 50 && lux <= 10000) { //Change things for normal light } if (lux > 10000) { //Change things for bright light } }); Live demo (requires light sensor and supported browser). Soon we may also be able to do such detection through CSS, with light-level being cited in the Media Queries Level 4 specification. If that becomes the case, it’ll probably look something like this: @media (light-level: dim) { /*Change things for dim light*/ } @media (light-level: normal) { /*Change things for normal light*/ } @media (light-level: washed) { /*Change things for bright light*/ } While we may be quick to dismiss this kind of detection as being a gimmick, it’s important to consider that apps such as Light Detector, listed on Apple’s accessibility page, provide important context around exactly this functionality. “If you are blind, Light Detector helps you to be more independent in many daily activities. At home, point your iPhone towards the ceiling to understand where the light fixtures are and whether they are switched on. In a room, move the device along the wall to check if there is a window and where it is. You can find out whether the shades are drawn by moving the device up and down.” everywaretechnologies.com/apps/lightdetector Input can be about so much more than what we enter through keyboards. Both an ever increasing amount of available sensors and more APIs being supported by the major browsers will allow us to cater for more scenarios and respond to them accordingly. This can be as complex or simple as you need; for instance, while x-webkit-speech has been deprecated, the web speech API is available for a number of browsers, and research into sign language detection is also being performed by organisations such as Microsoft. Output Web technologies give us some great enhancements around input, allowing us to adapt our experiences accordingly. They also provide us with some nice ways to provide feedback to users. When we play video games, many of our modern consoles come with the ability to have rumble effects on our controller pads. These are a great example of an enhancement, as they provide a level of feedback that is entirely optional, but which can give a great deal of extra information to the player in the right circumstances, and broaden the scope of our comprehension beyond what we’re seeing and hearing. Haptic feedback is possible on the web as well. We could use this in any number of responsible applications, such as alerting a user to changes or using different patterns as a communication mechanism. If you find yourself in a pickle, here’s how to print out SOS in Morse code through the vibration API. The following code indicates the length of vibration in milliseconds, interspersed by pauses in milliseconds. navigator.vibrate([100, 300, 100, 300, 100, 300, 600, 300, 600, 300, 600, 300, 100, 300, 100, 300, 100]); Live demo (requires supported browser) With great power… What you’ve no doubt come to realise by now is that these are just more examples of progressive enhancement, whose inclusion will provide a better experience if the capabilities are available, but which we should not rely on. This idea isn’t new, but the most important thing to remember, and what I would like you to take away from this article, is that it is up to us to decide to include these kind of approaches within our projects – if we don’t root for them, they probably won’t happen. This is where our professional responsibility comes in. We won’t necessarily be asked to implement solutions for the scenarios above, but they illustrate how we can help to push the boundaries of experiences. Maybe we’ll have to switch our thinking about how we build, but we can create more usable products for a diverse range of people and usage scenarios through the choices we make around technology. Let’s stop thinking simply in terms of features inside a narrow view of our target users, and work out how we can extend these to cater for a wider set of situations. When you plan your next digital project, consider the power of the web and the enhancements we can use, and try to make your projects even more responsive and responsible. 2014 Sally Jenkinson sallyjenkinson 2014-12-10T00:00:00+00:00 https://24ways.org/2014/making-sites-more-responsive-responsibly/ code
31 Dealing with Emergencies in Git The stockings were hung by the chimney with care, In hopes that version control soon would be there. This summer I moved to the UK with my partner, and the onslaught of the Christmas holiday season began around the end of October (October!). It does mean that I’ve had more than a fair amount of time to come up with horrible Git analogies for this article. Analogies, metaphors, and comparisons help the learner hook into existing mental models about how a system works. They only help, however, if the learner has enough familiarity with the topic at hand to make the connection between the old and new information. Let’s start by painting an updated version of Clement Clarke Moore’s Christmas living room. Empty stockings are hung up next to the fireplace, waiting for Saint Nicholas to come down the chimney and fill them with small treats. Holiday treats are scattered about. A bowl of mixed nuts, the holiday nutcracker, and a few clementines. A string of coloured lights winds its way up an evergreen. Perhaps a few of these images are familiar, or maybe they’re just settings you’ve seen in a movie. It doesn’t really matter what the living room looks like though. The important thing is to ground yourself in your own experiences before tackling a new subject. Instead of trying to brute-force your way into new information, as an adult learner constantly ask yourself: ‘What is this like? What does this remind me of? What do I already know that I can use to map out this new territory?’ It’s okay if the map isn’t perfect. As you refine your understanding of a new topic, you’ll outgrow the initial metaphors, analogies, and comparisons. With apologies to Mr. Moore, let’s give it a try. Getting Interrupted in Git When on the roof there arose such a clatter! You’re happily working on your software project when all of a sudden there are freaking reindeer on the roof! Whatever you’ve been working on is going to need to wait while you investigate the commotion. If you’ve got even a little bit of experience working with Git, you know that you cannot simply change what you’re working on in times of emergency. If you’ve been doing work, you have a dirty working directory and you cannot change branches, or push your work to a remote repository while in this state. Up to this point, you’ve probably dealt with emergencies by making a somewhat useless commit with a message something to the effect of ‘switching branches for a sec’. This isn’t exactly helpful to future you, as commits should really contain whole ideas of completed work. If you get interrupted, especially if there are reindeer on the roof, the chances are very high that you weren’t finished with what you were working on. You don’t need to make useless commits though. Instead, you can use the stash command. This command allows you to temporarily set aside all of your changes so that you can come back to them later. In this sense, stash is like setting your book down on the side table (or pushing the cat off your lap) so you can go investigate the noise on the roof. You aren’t putting your book away though, you’re just putting it down for a moment so you can come back and find it exactly the way it was when you put it down. Let’s say you’ve been working in the branch waiting-for-st-nicholas, and now you need to temporarily set aside your changes to see what the noise was on the roof: $ git stash After running this command, all uncommitted work will be temporarily removed from your working directory, and you will be returned to whatever state you were in the last time you committed your work. With the book safely on the side table, and the cat safely off your lap, you are now free to investigate the noise on the roof. It turns out it’s not reindeer after all, but just your boss who thought they’d help out by writing some code on the project you’ve been working on. Bless. Rolling your eyes, you agree to take a look and see what kind of mischief your boss has gotten themselves into this time. You fetch an updated list of branches from the remote repository, locate the branch your boss had been working on, and checkout a local copy: $ git fetch $ git branch -r $ git checkout -b helpful-boss-branch origin/helpful-boss-branch You are now in a local copy of the branch where you are free to look around, and figure out exactly what’s going on. You sigh audibly and say, ‘Okay. Tell me what was happening when you first realised you’d gotten into a mess’ as you look through the log messages for the branch. $ git log --oneline $ git log By using the log command you will be able to review the history of the branch and find out the moment right before your boss ended up stuck on your roof. You may also want to compare the work your boss has done to the main branch for your project. For this article, we’ll assume the main branch is named master. $ git diff master Looking through the commits, you may be able to see that things started out okay but then took a turn for the worse. Checking out a single commit Using commands you’re already familiar with, you can rewind through history and take a look at the state of the code at any moment in time by checking out a single commit, just like you would a branch. Using the log command, locate the unique identifier (commit hash) of the commit you want to investigate. For example, let’s say the unique identifier you want to checkout is 25f6d7f. $ git checkout 25f6d7f Note: checking out '25f6d7f'. You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by performing another checkout. If you want to create a new branch to retain commits you create, you may do so (now or later) by using @-b@ with the checkout command again. Example: $ git checkout -b new_branch_name HEAD is now at 25f6d7f... Removed first paragraph. This is usually where people start to panic. Your boss screwed something up, and now your HEAD is detached. Under normal circumstances, these words would be a very good reason to panic. Take a deep breath. Nothing bad is going to happen. Being in a detached HEAD state just means you’ve temporarily disconnected from a known chain of events. In other words, you’re currently looking at the middle of a story (or branch) about what happened – and you’re not at the endpoint for this particular story. Git allows you to view the history of your repository as a timeline (technically it’s a directed acyclic graph). When you make commits which are not associated with a branch, they are essentially inaccessible once you return to a known branch. If you make commits while you’re in a detached HEAD state, and then try to return to a known branch, Git will give you a warning and tell you how to save your work. $ git checkout master Warning: you are leaving 1 commit behind, not connected to any of your branches: 7a85788 Your witty holiday commit message. If you want to keep them by creating a new branch, this may be a good time to do so with: $ git branch new_branch_name 7a85788 Switched to branch 'master' Your branch is up-to-date with 'origin/master'. So, if you want to save the commits you’ve made while in a detached HEAD state, you simply need to put them on a new branch. $ git branch saved-headless-commits 7a85788 With this trick under your belt, you can jingle around in history as much as you’d like. It’s not like sliding around on a timeline though. When you checkout a specific commit, you will only have access to the history from that point backwards in time. If you want to move forward in history, you’ll need to move back to the branch tip by checking out the branch again. $ git checkout helpful-boss-branch You’re now back to the present. Your HEAD is now pointing to the endpoint of a known branch, and so it is no longer detached. Any changes you made while on your adventure are safely stored in a new branch, assuming you’ve followed the instructions Git gave you. That wasn’t so scary after all, now, was it? Back to our reindeer problem. If your boss is anything like the bosses I’ve worked with, chances are very good that at least some of their work is worth salvaging. Depending on how your repository is structured, you’ll want to capture the good work using one of several different methods. Back in the living room, we’ll use our bowl of nuts to illustrate how you can rescue a tiny bit of work. Saving just one commit About that bowl of nuts. If you’re like me, you probably had some favourite kinds of nuts from an assorted collection. Walnuts were generally the most satisfying to crack open. So, instead of taking the entire bowl of nuts and dumping it into a stocking (merging the stocking and the bowl of nuts), we’re just going to pick out one nut from the bowl. In Git terms, we’re going to cherry-pick a commit and save it to another branch. First, checkout the main branch for your development work. From this branch, create a new branch where you can copy the changes into. $ git checkout master $ git checkout -b rescue-the-boss From your boss’s branch, helpful-boss-branch locate the commit you want to keep. $ git log --oneline helpful-boss-branch Let’s say the commit ID you want to keep is e08740b. From your rescue branch, use the command cherry-pick to copy the changes into your current branch. $ git cherry-pick e08740b If you review the history of your current branch again, you will see you now also have the changes made in the commit in your boss’s branch. At this point you might need to make a few additional fixes to help your boss out. (You’re angling for a bonus out of all this. Go the extra mile.) Once you’ve made your additional changes, you’ll need to add that work to the branch as well. $ git add [filename(s)] $ git commit -m "Building on boss's work to improve feature X." Go ahead and test everything, and make sure it’s perfect. You don’t want to introduce your own mistakes during the rescue mission! Uploading the fixed branch The next step is to upload the new branch to the remote repository so that your boss can download it and give you a huge bonus for helping you fix their branch. $ git push -u origin rescue-the-boss Cleaning up and getting back to work With your boss rescued, and your bonus secured, you can now delete the local temporary branches. $ git branch --delete rescue-the-boss $ git branch --delete helpful-boss-branch And settle back into your chair to wait for Saint Nicholas with your book, your branch, and possibly your cat. $ git checkout waiting-for-st-nicholas $ git stash pop Your working directory has been returned to exactly the same state you were in at the beginning of the article. Having fun with analogies I’ve had a bit of fun with analogies in this article. But sometimes those little twists on ideas can really help someone pick up a new idea (git stash: it’s like when Christmas comes around and everyone throws their fashion sense out the window and puts on a reindeer sweater for the holiday party; or git bisect: it’s like trying to find that one broken light on the string of Christmas lights). It doesn’t matter if the analogy isn’t perfect. It’s just a way to give someone a temporary hook into a concept in a way that makes the concept accessible while the learner becomes comfortable with it. As the learner’s comfort increases, the analogies can drop away, making room for the technically correct definition of how something works. Or, if you’re like me, you can choose to never grow old and just keep mucking about in the analogies. I’d argue it’s a lot more fun to play with a string of Christmas lights and some holiday cheer than a directed acyclic graph anyway. 2014 Emma Jane Westby emmajanewestby 2014-12-02T00:00:00+00:00 https://24ways.org/2014/dealing-with-emergencies-in-git/ code
37 JavaScript Modules the ES6 Way JavaScript admittedly has plenty of flaws, but one of the largest and most prominent is the lack of a module system: a way to split up your application into a series of smaller files that can depend on each other to function correctly. This is something nearly all other languages come with out of the box, whether it be Ruby’s require, Python’s import, or any other language you’re familiar with. Even CSS has @import! JavaScript has nothing of that sort, and this has caused problems for application developers as they go from working with small websites to full client-side applications. Let’s be clear: it doesn’t mean the new module system in the upcoming version of JavaScript won’t be useful to you if you’re building smaller websites rather than the next Instagram. Thankfully, the lack of a module system will soon be a problem of the past. The next version of JavaScript, ECMAScript 6, will bring with it a full-featured module and dependency management solution for JavaScript. The bad news is that it won’t be landing in browsers for a while yet – but the good news is that the specification for the module system and how it will look has been finalised. The even better news is that there are tools available to get it all working in browsers today without too much hassle. In this post I’d like to give you the gift of JS modules and show you the syntax, and how to use them in browsers today. It’s much simpler than you might think. What is ES6? ECMAScript is a scripting language that is standardised by a company called Ecma International. JavaScript is an implementation of ECMAScript. ECMAScript 6 is simply the next version of the ECMAScript standard and, hence, the next version of JavaScript. The spec aims to be fully comfirmed and complete by the end of 2014, with a target initial release date of June 2015. It’s impossible to know when we will have full feature support across the most popular browsers, but already some ES6 features are landing in the latest builds of Chrome and Firefox. You shouldn’t expect to be able to use the new features across browsers without some form of additional tooling or library for a while yet. The ES6 module spec The ES6 module spec was fully confirmed in July 2014, so all the syntax I will show you in this article is not expected to change. I’ll first show you the syntax and the new APIs being added to the language, and then look at how to use them today. There are two parts to the new module system. The first is the syntax for declaring modules and dependencies in your JS files, and the second is a programmatic API for loading in modules manually. The first is what most people are expected to use most of the time, so it’s what I’ll focus on more. Module syntax The key thing to understand here is that modules have two key components. First, they have dependencies. These are things that the module you are writing depends on to function correctly. For example, if you were building a carousel module that used jQuery, you would say that jQuery is a dependency of your carousel. You import these dependencies into your module, and we’ll see how to do that in a minute. Second, modules have exports. These are the functions or variables that your module exposes publicly to anything that imports it. Using jQuery as the example again, you could say that jQuery exports the $ function. Modules that depend on and hence import jQuery get access to the $ function, because jQuery exports it. Another important thing to note is that when I discuss a module, all I really mean is a JavaScript file. There’s no extra syntax to use other than the new ES6 syntax. Once ES6 lands, modules and files will be analogous. Named exports Modules can export multiple objects, which can be either plain old variables or JavaScript functions. You denote something to be exported with the export keyword: export function double(x) { return x + x; }; You can also store something in a variable then export it. If you do that, you have to wrap the variable in a set of curly braces. var double = function(x) { return x + x; } export { double }; A module can then import the double function like so: import { double } from 'mymodule'; double(2); // 4 Again, curly braces are required around the variable you would like to import. It’s also important to note that from 'mymodule' will look for a file called mymodule.js in the same directory as the file you are requesting the import from. There is no need to add the .js extension. The reason for those extra braces is that this syntax lets you export multiple variables: var double = function(x) { return x + x; } var square = function(x) { return x * x; } export { double, square } I personally prefer this syntax over the export function …, but only because it makes it much clearer to me what the module exports. Typically I will have my export {…} line at the bottom of the file, which means I can quickly look in one place to determine what the module is exporting. A file importing both double and square can do so in just the way you’d expect: import { double, square } from 'mymodule'; double(2); // 4 square(3); // 9 With this approach you can’t easily import an entire module and all its methods. This is by design – it’s much better and you’re encouraged to import just the functions you need to use. Default exports Along with named exports, the system also lets a module have a default export. This is useful when you are working with a large library such as jQuery, Underscore, Backbone and others, and just want to import the entire library. A module can define its default export (it can only ever have one default export) like so: export default function(x) { return x + x; } And that can be imported: import double from 'mymodule'; double(2); // 4 This time you do not use the curly braces around the name of the object you are importing. Also notice how you can name the import whatever you’d like. Default exports are not named, so you can import them as anything you like: import christmas from 'mymodule'; christmas(2); // 4 The above is entirely valid. Although it’s not something that is used too often, a module can have both named exports and a default export, if you wish. One of the design goals of the ES6 modules spec was to favour default exports. There are many reasons behind this, and there is a very detailed discussion on the ES Discuss site about it. That said, if you find yourself preferring named exports, that’s fine, and you shouldn’t change that to meet the preferences of those designing the spec. Programmatic API Along with the syntax above, there is also a new API being added to the language so you can programmatically import modules. It’s pretty rare you would use this, but one obvious example is loading a module conditionally based on some variable or property. You could easily import a polyfill, for example, if the user’s browser didn’t support a feature your app relied on. An example of doing this is: if(someFeatureNotSupported) { System.import('my-polyfill').then(function(myPolyFill) { // use the module from here }); } System.import will return a promise, which, if you’re not familiar, you can read about in this excellent article on HTMl5 Rocks by Jake Archibald. A promise basically lets you attach callback functions that are run when the asynchronous operation (in this case, System.import), is complete. This programmatic API opens up a lot of possibilities and will also provide hooks to allow you to register callbacks that will run at certain points in the lifetime of a module. Those hooks and that syntax are slightly less set in stone, but when they are confirmed they will provide really useful functionality. For example, you could write code that would run every module that you import through something like JSHint before importing it. In development that would provide you with an easy way to keep your code quality high without having to run a command line watch task. How to use it today It’s all well and good having this new syntax, but right now it won’t work in any browser – and it’s not likely to for a long time. Maybe in next year’s 24 ways there will be an article on how you can use ES6 modules with no extra work in the browser, but for now we’re stuck with a bit of extra work. ES6 module transpiler One solution is to use the ES6 module transpiler, a compiler that lets you write your JavaScript using the ES6 module syntax (actually a subset of it – not quite everything is supported, but the main features are) and have it compiled into either CommonJS-style code (CommonJS is the module specification that NodeJS and Browserify use), or into AMD-style code (the spec RequireJS uses). There are also plugins for all the popular build tools, including Grunt and Gulp. The advantage of using this transpiler is that if you are already using a tool like RequireJS or Browserify, you can drop the transpiler in, start writing in ES6 and not worry about any additional work to make the code work in the browser, because you should already have that set up already. If you don’t have any system in place for handling modules in the browser, using the transpiler doesn’t really make sense. Remember, all this does is convert ES6 module code into CommonJS- or AMD-compliant JavaScript. It doesn’t do anything to help you get that code running in the browser, but if you have that part sorted it’s a really nice addition to your workflow. If you would like a tutorial on how to do this, I wrote a post back in June 2014 on using ES6 with the ES6 module transpiler. SystemJS Another solution is SystemJS. It’s the best solution in my opinion, particularly if you are starting a new project from scratch, or want to use ES6 modules on a project where you have no current module system in place. SystemJS is a spec-compliant universal module loader: it loads ES6 modules, AMD modules, CommonJS modules, as well as modules that just add a variable to the global scope (window, in the browser). To load in ES6 files, SystemJS also depends on two other libraries: the ES6 module loader polyfill; and Traceur. Traceur is best accessed through the bower-traceur package, as the main repository doesn’t have an easy to find downloadable version. The ES6 module load polyfill implements System.import, and lets you load in files using it. Traceur is an ES6-to-ES5 module loader. It takes code written in ES6, the newest version of JavaScript, and transpiles it into ES5, the version of JavaScript widely implemented in browsers. The advantage of this is that you can play with the new features of the language today, even though they are not supported in browsers. The drawback is that you have to run all your files through Traceur every time you save them, but this is easily automated. Additionally, if you use SystemJS, the Traceur compilation is done automatically for you. All you need to do to get SystemJS running is to add a <script> element to load SystemJS into your webpage. It will then automatically load the ES6 module loader and Traceur files when it needs them. In your HTML you then need to use System.import to load in your module: <script> System.import('./app'); </script> When you load the page, app.js will be asynchronously loaded. Within app.js, you can now use ES6 modules. SystemJS will detect that the file is an ES6 file, automatically load Traceur, and compile the file into ES5 so that it works in the browser. It does all this dynamically in the browser, but there are tools to bundle your application in production, so it doesn’t make a lot of requests on the live site. In development though, it makes for a really nice workflow. When working with SystemJS and modules in general, the best approach is to have a main module (in our case app.js) that is the main entry point for your application. app.js should then be responsible for loading all your application’s modules. This forces you to keep your application organised by only loading one file initially, and having the rest dealt with by that file. SystemJS also provides a workflow for bundling your application together into one file. Conclusion ES6 modules may be at least six months to a year away (if not more) but that doesn’t mean they can’t be used today. Although there is an overhead to using them now – with the work required to set up SystemJS, the module transpiler, or another solution – that doesn’t mean it’s not worthwhile. Using any module system in the browser, whether that be RequireJS, Browserify or another alternative, requires extra tooling and libraries to support it, and I would argue that the effort to set up SystemJS is no greater than that required to configure any other tool. It also comes with the extra benefit that when the syntax is supported in browsers, you get a free upgrade. You’ll be able to remove SystemJS and have everything continue to work, backed by the native browser solution. If you are starting a new project, I would strongly advocate using ES6 modules. It is a syntax and specification that is not going away at all, and will soon be supported in browsers. Investing time in learning it now will pay off hugely further down the road. Further reading If you’d like to delve further into ES6 modules (or ES6 generally) and using them today, I recommend the following resources: ECMAScript 6 modules: the final syntax by Axel Rauschmayer Practical Workflows for ES6 Modules by Guy Bedford ECMAScript 6 resources for the curious JavaScripter by Addy Osmani Tracking ES6 support by Addy Osmani ES6 Tools List by Addy Osmani Using Grunt and the ES6 Module Transpiler by Thomas Boyt JavaScript Modules and Dependencies with jspm by myself Using ES6 Modules Today by Guy Bedford 2014 Jack Franklin jackfranklin 2014-12-03T00:00:00+00:00 https://24ways.org/2014/javascript-modules-the-es6-way/ code
49 Universal React One of the libraries to receive a huge amount of focus in 2015 has been ReactJS, a library created by Facebook for building user interfaces and web applications. More generally we’ve seen an even greater rise in the number of applications built primarily on the client side with most of the logic implemented in JavaScript. One of the main issues with building an app in this way is that you immediately forgo any customers who might browse with JavaScript turned off, and you can also miss out on any robots that might visit your site to crawl it (such as Google’s search bots). Additionally, we gain a performance improvement by being able to render from the server rather than having to wait for all the JavaScript to be loaded and executed. The good news is that this problem has been recognised and it is possible to build a fully featured client-side application that can be rendered on the server. The way in which these apps work is as follows: The user visits www.yoursite.com and the server executes your JavaScript to generate the HTML it needs to render the page. In the background, the client-side JavaScript is executed and takes over the duty of rendering the page. The next time a user clicks, rather than being sent to the server, the client-side app is in control. If the user doesn’t have JavaScript enabled, each click on a link goes to the server and they get the server-rendered content again. This means you can still provide a very quick and snappy experience for JavaScript users without having to abandon your non-JS users. We achieve this by writing JavaScript that can be executed on the server or on the client (you might have heard this referred to as isomorphic) and using a JavaScript framework that’s clever enough handle server- or client-side execution. Currently, ReactJS is leading the way here, although Ember and Angular are both working on solutions to this problem. It’s worth noting that this tutorial assumes some familiarity with React in general, its syntax and concepts. If you’d like a refresher, the ReactJS docs are a good place to start.  Getting started We’re going to create a tiny ReactJS application that will work on the server and the client. First we’ll need to create a new project and install some dependencies. In a new, blank directory, run: npm init -y npm install --save ejs express react react-router react-dom That will create a new project and install our dependencies: ejs is a templating engine that we’ll use to render our HTML on the server. express is a small web framework we’ll run our server on. react-router is a popular routing solution for React so our app can fully support and respect URLs. react-dom is a small React library used for rendering React components. We’re also going to write all our code in ECMAScript 6, and therefore need to install BabelJS and configure that too. npm install --save-dev babel-cli babel-preset-es2015 babel-preset-react Then, create a .babelrc file that contains the following: { "presets": ["es2015", "react"] } What we’ve done here is install Babel’s command line interface (CLI) tool and configured it to transform our code from ECMAScript 6 (or ES2015) to ECMAScript 5, which is more widely supported. We’ll need the React transforms when we start writing JSX when working with React. Creating a server For now, our ExpressJS server is pretty straightforward. All we’ll do is render a view that says ‘Hello World’. Here’s our server code: import express from 'express'; import http from 'http'; const app = express(); app.use(express.static('public')); app.set('view engine', 'ejs'); app.get('*', (req, res) => { res.render('index'); }); const server = http.createServer(app); server.listen(3003); server.on('listening', () => { console.log('Listening on 3003'); }); Here we’re using ES6 modules, which I wrote about on 24 ways last year, if you’d like a reminder. We tell the app to render the index view on any GET request (that’s what app.get('*') means, the wildcard matches any route). We now need to create the index view file, which Express expects to be defined in views/index.ejs: <!DOCTYPE html> <html> <head> <title>My App</title> </head> <body> Hello World </body> </html> Finally, we’re ready to run the server. Because we installed babel-cli earlier we have access to the babel-node executable, which will transform all your code before running it through node. Run this command: ./node_modules/.bin/babel-node server.js And you should now be able to visit http://localhost:3003 and see ‘Hello World’ right there: Building the React app Now we’ll build the React application entirely on the server, before adding the client-side JavaScript right at the end. Our app will have two routes, / and /about which will both show a small amount of content. This will demonstrate how to use React Router on the server side to make sure our React app plays nicely with URLs. Firstly, let’s update views/index.ejs. Our server will figure out what HTML it needs to render, and pass that into the view. We can pass a value into our view when we render it, and then use EJS syntax to tell it to output that data. Update the template file so the body looks like so: <body> <%- markup %> </body> Next, we’ll define the routes we want our app to have using React Router. For now we’ll just define the index route, and not worry about the /about route quite yet. We could define our routes in JSX, but I think for server-side rendering it’s clearer to define them as an object. Here’s what we’re starting with: const routes = { path: '', component: AppComponent, childRoutes: [ { path: '/', component: IndexComponent } ] } These are just placed at the top of server.js, after the import statements. Later we’ll move these into a separate file, but for now they are fine where they are. Notice how I define first that the AppComponent should be used at the '' path, which effectively means it matches every single route and becomes a container for all our other components. Then I give it a child route of /, which will match the IndexComponent. Before we hook these routes up with our server, let’s quickly define components/app.js and components/index.js. app.js looks like so: import React from 'react'; export default class AppComponent extends React.Component { render() { return ( <div> <h2>Welcome to my App</h2> { this.props.children } </div> ); } } When a React Router route has child components, they are given to us in the props under the children key, so we need to include them in the code we want to render for this component. The index.js component is pretty bland: import React from 'react'; export default class IndexComponent extends React.Component { render() { return ( <div> <p>This is the index page</p> </div> ); } } Server-side routing with React Router Head back into server.js, and firstly we’ll need to add some new imports: import React from 'react'; import { renderToString } from 'react-dom/server'; import { match, RoutingContext } from 'react-router'; import AppComponent from './components/app'; import IndexComponent from './components/index'; The ReactDOM package provides react-dom/server which includes a renderToString method that takes a React component and produces the HTML string output of the component. It’s this method that we’ll use to render the HTML from the server, generated by React. From the React Router package we use match, a function used to find a matching route for a URL; and RoutingContext, a React component provided by React Router that we’ll need to render. This wraps up our components and provides some functionality that ties React Router together with our app. Generally you don’t need to concern yourself about how this component works, so don’t worry too much. Now for the good bit: we can update our app.get('*') route with the code that matches the URL against the React routes: app.get('*', (req, res) => { // routes is our object of React routes defined above match({ routes, location: req.url }, (err, redirectLocation, props) => { if (err) { // something went badly wrong, so 500 with a message res.status(500).send(err.message); } else if (redirectLocation) { // we matched a ReactRouter redirect, so redirect from the server res.redirect(302, redirectLocation.pathname + redirectLocation.search); } else if (props) { // if we got props, that means we found a valid component to render // for the given route const markup = renderToString(<RoutingContext {...props} />); // render `index.ejs`, but pass in the markup we want it to display res.render('index', { markup }) } else { // no route match, so 404. In a real app you might render a custom // 404 view here res.sendStatus(404); } }); }); We call match, giving it the routes object we defined earlier and req.url, which contains the URL of the request. It calls a callback function we give it, with err, redirectLocation and props as the arguments. The first two conditionals in the callback function just deal with an error occuring or a redirect (React Router has built in redirect support). The most interesting bit is the third conditional, else if (props). If we got given props and we’ve made it this far it means we found a matching component to render and we can use this code to render it: ... } else if (props) { // if we got props, that means we found a valid component to render // for the given route const markup = renderToString(<RoutingContext {...props} />); // render `index.ejs`, but pass in the markup we want it to display res.render('index', { markup }) } else { ... } The renderToString method from ReactDOM takes that RoutingContext component we mentioned earlier and renders it with the properties required. Again, you need not concern yourself with what this specific component does or what the props are. Most of this is data that React Router provides for us on top of our components. Note the {...props}, which is a neat bit of JSX syntax that spreads out our object into key value properties. To see this better, note the two pieces of JSX code below, both of which are equivalent: <MyComponent a="foo" b="bar" /> // OR: const props = { a: "foo", b: "bar" }; <MyComponent {...props} /> Running the server again I know that felt like a lot of work, but the good news is that once you’ve set this up you are free to focus on building your React components, safe in the knowledge that your server-side rendering is working. To check, restart the server and head to http://localhost:3003 once more. You should see it all working! Refactoring and one more route Before we move on to getting this code running on the client, let’s add one more route and do some tidying up. First, move our routes object out into routes.js: import AppComponent from './components/app'; import IndexComponent from './components/index'; const routes = { path: '', component: AppComponent, childRoutes: [ { path: '/', component: IndexComponent } ] } export { routes }; And then update server.js. You can remove the two component imports and replace them with: import { routes } from './routes'; Finally, let’s add one more route for ./about and links between them. Create components/about.js: import React from 'react'; export default class AboutComponent extends React.Component { render() { return ( <div> <p>A little bit about me.</p> </div> ); } } And then you can add it to routes.js too: import AppComponent from './components/app'; import IndexComponent from './components/index'; import AboutComponent from './components/about'; const routes = { path: '', component: AppComponent, childRoutes: [ { path: '/', component: IndexComponent }, { path: '/about', component: AboutComponent } ] } export { routes }; If you now restart the server and head to http://localhost:3003/about` you’ll see the about page! For the finishing touch we’ll use the React Router link component to add some links between the pages. Edit components/app.js to look like so: import React from 'react'; import { Link } from 'react-router'; export default class AppComponent extends React.Component { render() { return ( <div> <h2>Welcome to my App</h2> <ul> <li><Link to='/'>Home</Link></li> <li><Link to='/about'>About</Link></li> </ul> { this.props.children } </div> ); } } You can now click between the pages to navigate. However, everytime we do so the requests hit the server. Now we’re going to make our final change, such that after the app has been rendered on the server once, it gets rendered and managed in the client, providing that snappy client-side app experience. Client-side rendering First, we’re going to make a small change to views/index.ejs. React doesn’t like rendering directly into the body and will give a warning when you do so. To prevent this we’ll wrap our app in a div: <body> <div id="app"><%- markup %></div> <script src="build.js"></script> </body> I’ve also added in a script tag to build.js, which is the file we’ll generate containing all our client-side code. Next, create client-render.js. This is going to be the only bit of JavaScript that’s exclusive to the client side. In it we need to pull in our routes and render them to the DOM. import React from 'react'; import ReactDOM from 'react-dom'; import { Router } from 'react-router'; import { routes } from './routes'; import createBrowserHistory from 'history/lib/createBrowserHistory'; ReactDOM.render( <Router routes={routes} history={createBrowserHistory()} />, document.getElementById('app') ) The first thing you might notice is the mention of createBrowserHistory. React Router is built on top of the history module, a module that listens to the browser’s address bar and parses the new location. It has many modes of operation: it can keep track using a hashbang, such as http://localhost/#!/about (this is the default), or you can tell it to use the HTML5 history API by calling createBrowserHistory, which is what we’ve done. This will keep the URLs nice and neat and make sure the client and the server are using the same URL structure. You can read more about React Router and histories in the React Router documentation. Finally we use ReactDOM.render and give it the Router component, telling it about all our routes, and also tell ReactDOM where to render, the #app element. Generating build.js We’re actually almost there! The final thing we need to do is generate our client side bundle. For this we’re going to use webpack, a module bundler that can take our application, follow all the imports and generate one large bundle from them. We’ll install it and babel-loader, a webpack plugin for transforming code through Babel. npm install --save-dev webpack babel-loader To run webpack we just need to create a configuration file, called webpack.config.js. Create the file in the root of our application and add the following code: var path = require('path'); module.exports = { entry: path.join(process.cwd(), 'client-render.js'), output: { path: './public/', filename: 'build.js' }, module: { loaders: [ { test: /.js$/, loader: 'babel' } ] } } Note first that this file can’t be written in ES6 as it doesn’t get transformed. The first thing we do is tell webpack the main entry point for our application, which is client-render.js. We use process.cwd() because webpack expects an exact location – if we just gave it the string ‘client-render.js’, webpack wouldn’t be able to find it. Next, we tell webpack where to output our file, and here I’m telling it to place the file in public/build.js. Finally we tell webpack that every time it hits a file that ends in .js, it should use the babel-loader plugin to transform the code first. Now we’re ready to generate the bundle! ./node_modules/.bin/webpack This will take a fair few seconds to run (on my machine it’s about seven or eight), but once it has it will have created public/build.js, a client-side bundle of our application. If you restart your server once more you’ll see that we can now navigate around our application without hitting the server, because React on the client takes over. Perfect! The first bundle that webpack generates is pretty slow, but if you run webpack -w it will go into watch mode, where it watches files for changes and regenerates the bundle. The key thing is that it only regenerates the small pieces of the bundle it needs, so while the first bundle is very slow, the rest are lightning fast. I recommend leaving webpack constantly running in watch mode when you’re developing. Conclusions First, if you’d like to look through this code yourself you can find it all on GitHub. Feel free to raise an issue there or tweet me if you have any problems or would like to ask further questions. Next, I want to stress that you shouldn’t use this as an excuse to build all your apps in this way. Some of you might be wondering whether a static site like the one we built today is worth its complexity, and you’d be right. I used it as it’s an easy example to work with but in the future you should carefully consider your reasons for wanting to build a universal React application and make sure it’s a suitable infrastructure for you. With that, all that’s left for me to do is wish you a very merry Christmas and best of luck with your React applications! 2015 Jack Franklin jackfranklin 2015-12-05T00:00:00+00:00 https://24ways.org/2015/universal-react/ code
54 Putting My Patterns through Their Paces Over the last few years, the conversation around responsive design has shifted subtly, focusing not on designing pages, but on patterns: understanding the small, reusable elements that comprise a larger design system. And given that many of those patterns are themselves responsive, learning to manage these small layout systems has become a big part of my work. The thing is, the more pattern-driven work I do, the more I realize my design process has changed in a number of subtle, important ways. I suppose you might even say that pattern-driven design has, in a few ways, redesigned me. Meet the Teaser Here’s a recent example. A few months ago, some friends and I redesigned The Toast. (It was a really, really fun project, and we learned a lot.) Each page of the site is, as you might guess, stitched together from a host of tiny, reusable patterns. Some of them, like the search form and footer, are fairly unique, and used once per page; others are used more liberally, and built for reuse. The most prevalent example of these more generic patterns is the teaser, which is classed as, uh, .teaser. (Look, I never said I was especially clever.) In its simplest form, a teaser contains a headline, which links to an article: Fairly straightforward, sure. But it’s just the foundation: from there, teasers can have a byline, a description, a thumbnail, and a comment count. In other words, we have a basic building block (.teaser) that contains a few discrete content types – some required, some not. In fact, very few of those pieces need to be present; to qualify as a teaser, all we really need is a link and a headline. But by adding more elements, we can build slight variations of our teaser, and make it much, much more versatile. Nearly every element visible on this page is built out of our generic “teaser” pattern. But the teaser variation I’d like to call out is the one that appears on The Toast’s homepage, on search results or on section fronts. In the main content area, each teaser in the list features larger images, as well as an interesting visual treatment: the byline and comment count were the most prominent elements within each teaser, appearing above the headline. The approved visual design of our teaser, as it appears on lists on the homepage and the section fronts. And this is, as it happens, the teaser variation that gave me pause. Back in the old days – you know, like six months ago – I probably would’ve marked this module up to match the design. In other words, I would’ve looked at the module’s visual hierarchy (metadata up top, headline and content below) and written the following HTML: <div class="teaser"> <p class="article-byline">By <a href="#">Author Name</a></p> <a class="comment-count" href="#">126 <i>comments</i></a> <h1 class="article-title"><a href="#">Article Title</a></h1> <p class="teaser-excerpt">Lorem ipsum dolor sit amet, consectetur…</p> </div> But then I caught myself, and realized this wasn’t the best approach. Moving Beyond Layout Since I’ve started working responsively, there’s a question I work into every step of my design process. Whether I’m working in Sketch, CSSing a thing, or researching a project, I try to constantly ask myself: What if someone doesn’t browse the web like I do? …Okay, that doesn’t seem especially fancy. (And maybe you came here for fancy.) But as straightforward as that question might seem, it’s been invaluable to so many aspects of my practice. If I’m working on a widescreen layout, that question helps me remember the constraints of the small screen; if I’m working on an interface that has some enhancements for touch, it helps me consider other input modes as I work. It’s also helpful as a reminder that many might not see the screen the same way I do, and that accessibility (in all its forms) should be a throughline for our work on the web. And that last point, thankfully, was what caught me here. While having the byline and comment count at the top was a lovely visual treatment, it made for a terrible content hierarchy. For example, it’d be a little weird if the page was being read aloud in a speaking browser: the name of the author and the number of comments would be read aloud before the title of the article with which they’re associated. That’s why I find it’s helpful to begin designing a pattern’s hierarchy before its layout: to move past the visual presentation in front of me, and focus on the underlying content I’m trying to support. In other words, if someone’s encountering my design without the CSS I’ve written, what should their experience be? So I took a step back, and came up with a different approach: <div class="teaser"> <h1 class="article-title"><a href="#">Article Title</a></h1> <h2 class="article-byline">By <a href="#">Author Name</a></h2> <p class="teaser-excerpt"> Lorem ipsum dolor sit amet, consectetur… <a class="comment-count" href="#">126 <i>comments</i></a> </p> </div> Much, much better. This felt like a better match for the content I was designing: the headline – easily most important element – was at the top, followed by the author’s name and an excerpt. And while the comment count is visually the most prominent element in the teaser, I decided it was hierarchically the least critical: that’s why it’s at the very end of the excerpt, the last element within our teaser. And with some light styling, we’ve got a respectable-looking hierarchy in place: Yeah, you’re right – it’s not our final design. But from this basic-looking foundation, we can layer on a bit more complexity. First, we’ll bolster the markup with an extra element around our title and byline: <div class="teaser"> <div class="teaser-hed"> <h1 class="article-title"><a href="#">Article Title</a></h1> <h2 class="article-byline">By <a href="#">Author Name</a></h2> </div> … </div> With that in place, we can use flexbox to tweak our layout, like so: .teaser-hed { display: flex; flex-direction: column-reverse; } flex-direction: column-reverse acts a bit like a change in gravity within our teaser-hed element, vertically swapping its two children. Getting closer! But as great as flexbox is, it doesn’t do anything for elements outside our container, like our little comment count, which is, as you’ve probably noticed, still stranded at the very bottom of our teaser. Flexbox is, as you might already know, wonderful! And while it enjoys incredibly broad support, there are enough implementations of old versions of Flexbox (in addition to plenty of bugs) that I tend to use a feature test to check if the browser’s using a sufficiently modern version of flexbox. Here’s the one we used: var doc = document.body || document.documentElement; var style = doc.style; if ( style.webkitFlexWrap == '' || style.msFlexWrap == '' || style.flexWrap == '' ) { doc.className += " supports-flex"; } Eagle-eyed readers will note we could have used @supports feature queries to ask browsers if they support certain CSS properties, removing the JavaScript dependency. But since we wanted to serve the layout to IE we opted to write a little question in JavaScript, asking the browser if it supports flex-wrap, a property used elsewhere in the design. If the browser passes the test, then a class of supports-flex gets applied to our html element. And with that class in place, we can safely quarantine our flexbox-enabled layout from less-capable browsers, and finish our teaser’s design: .supports-flex .teaser-hed { display: flex; flex-direction: column-reverse; } .supports-flex .teaser .comment-count { position: absolute; right: 0; top: 1.1em; } If the supports-flex class is present, we can apply our flexbox layout to the title area, sure – but we can also safely use absolute positioning to pull our comment count out of its default position, and anchor it to the top right of our teaser. In other words, the browsers that don’t meet our threshold for our advanced styles are left with an attractive design that matches our HTML’s content hierarchy; but the ones that pass our test receive the finished, final design. And with that, our teaser’s complete. Diving Into Device-Agnostic Design This is, admittedly, a pretty modest application of flexbox. (For some truly next-level work, I’d recommend Heydon Pickering’s “Flexbox Grid Finesse”, or anything Zoe Mickley Gillenwater publishes.) And for such a simple module, you might feel like this is, well, quite a bit of work. And you’d be right! In fact, it’s not one layout, but two: a lightly styled content hierarchy served to everyone, with the finished design served conditionally to the browsers that can successfully implement it. But I’ve found that thinking about my design as existing in broad experience tiers – in layers – is one of the best ways of designing for the modern web. And what’s more, it works not just for simple modules like our teaser, but for more complex or interactive patterns as well. Open video Even a simple search form can be conditionally enhanced, given a little layered thinking. This more layered approach to interface design isn’t a new one, mind you: it’s been championed by everyone from Filament Group to the BBC. And with all the challenges we keep uncovering, a more device-agnostic approach is one of the best ways I’ve found to practice responsive design. As Trent Walton once wrote, Like cars designed to perform in extreme heat or on icy roads, websites should be built to face the reality of the web’s inherent variability. We have a weird job, working on the web. We’re designing for the latest mobile devices, sure, but we’re increasingly aware that our definition of “smartphone” is much too narrow. Browsers have started appearing on our wrists and in our cars’ dashboards, but much of the world’s mobile data flows over sub-3G networks. After all, the web’s evolution has never been charted along a straight line: it’s simultaneously getting slower and faster, with devices new and old coming online every day. With all the challenges in front of us, including many we don’t yet know about, a more device-agnostic, more layered design process can better prepare our patterns – and ourselves – for the future. (It won’t help you get enough to eat at holiday parties, though.) 2015 Ethan Marcotte ethanmarcotte 2015-12-10T00:00:00+00:00 https://24ways.org/2015/putting-my-patterns-through-their-paces/ code
55 How Tabs Should Work Tabs in browsers (not browser tabs) are one of the oldest custom UI elements in a browser that I can think of. They’ve been done to death. But, sadly, most of the time I come across them, the tabs have been badly, or rather partially, implemented. So this post is my definition of how a tabbing system should work, and one approach of implementing that. But… tabs are easy, right? I’ve been writing code for tabbing systems in JavaScript for coming up on a decade, and at one point I was pretty proud of how small I could make the JavaScript for the tabbing system: var tabs = $('.tab').click(function () { tabs.hide().filter(this.hash).show(); }).map(function () { return $(this.hash)[0]; }); $('.tab:first').click(); Simple, right? Nearly fits in a tweet (ignoring the whole jQuery library…). Still, it’s riddled with problems that make it a far from perfect solution. Requirements: what makes the perfect tab? All content is navigable and available without JavaScript (crawler-compatible and low JS-compatible). ARIA roles. The tabs are anchor links that: are clickable have block layout have their href pointing to the id of the panel element use the correct cursor (i.e. cursor: pointer). Since tabs are clickable, the user can open in a new tab/window and the page correctly loads with the correct tab open. Right-clicking (and Shift-clicking) doesn’t cause the tab to be selected. Native browser Back/Forward button correctly changes the state of the selected tab (think about it working exactly as if there were no JavaScript in place). The first three points are all to do with the semantics of the markup and how the markup has been styled. I think it’s easy to do a good job by thinking of tabs as links, and not as some part of an application. Links are navigable, and they should work the same way other links on the page work. The last three points are JavaScript problems. Let’s investigate that. The shitmus test Like a litmus test, here’s a couple of quick ways you can tell if a tabbing system is poorly implemented: Change tab, then use the Back button (or keyboard shortcut) and it breaks The tab isn’t a link, so you can’t open it in a new tab These two basic things are, to me, the bare minimum that a tabbing system should have. Why is this important? The people who push their so-called native apps on users can’t have more reasons why the web sucks. If something as basic as a tab doesn’t work, obviously there’s more ammo to push a closed native app or platform on your users. If you’re going to be a web developer, one of your responsibilities is to maintain established interactivity paradigms. This doesn’t mean don’t innovate. But it does mean: stop fucking up my scrolling experience with your poorly executed scroll effects. </rant> :breath: URI fragment, absolute URL or query string? A URI fragment (AKA the # hash bit) would be using mysite.com/config#content to show the content panel. A fully addressable URL would be mysite.com/config/content. Using a query string (by way of filtering the page): mysite.com/config?tab=content. This decision really depends on the context of your tabbing system. For something like GitHub’s tabs to view a pull request, it makes sense that the full URL changes. For our problem though, I want to solve the issue when the page doesn’t do a full URL update; that is, your regular run-of-the-mill tabbing system. I used to be from the school of using the hash to show the correct tab, but I’ve recently been exploring whether the query string can be used. The biggest reason is that multiple hashes don’t work, and comma-separated hash fragments don’t make any sense to control multiple tabs (since it doesn’t actually link to anything). For this article, I’ll keep focused on using a single tabbing system and a hash on the URL to control the tabs. Markup I’m going to assume subcontent, so my markup would look like this (yes, this is a cat demo…): <ul class="tabs"> <li><a class="tab" href="#dizzy">Dizzy</a></li> <li><a class="tab" href="#ninja">Ninja</a></li> <li><a class="tab" href="#missy">Missy</a></li> </ul> <div id="dizzy"> <!-- panel content --> </div> <div id="ninja"> <!-- panel content --> </div> <div id="missy"> <!-- panel content --> </div> It’s important to note that in the markup the link used for an individual tab references its panel content using the hash, pointing to the id on the panel. This will allow our content to connect up without JavaScript and give us a bunch of features for free, which we’ll see once we’re on to writing the code. URL-driven tabbing systems Instead of making the code responsive to the user’s input, we’re going to exclusively use the browser URL and the hashchange event on the window to drive this tabbing system. This way we get Back button support for free. With that in mind, let’s start building up our code. I’ll assume we have the jQuery library, but I’ve also provided the full code working without a library (vanilla, if you will), but it depends on relatively new (polyfillable) tech like classList and dataset (which generally have IE10 and all other browser support). Note that I’ll start with the simplest solution, and I’ll refactor the code as I go along, like in places where I keep calling jQuery selectors. function show(id) { // remove the selected class from the tabs, // and add it back to the one the user selected $('.tab').removeClass('selected').filter(function () { return (this.hash === id); }).addClass('selected'); // now hide all the panels, then filter to // the one we're interested in, and show it $('.panel').hide().filter(id).show(); } $(window).on('hashchange', function () { show(location.hash); }); // initialise by showing the first panel show('#dizzy'); This works pretty well for such little code. Notice that we don’t have any click handlers for the user and the Back button works right out of the box. However, there’s a number of problems we need to fix: The initialised tab is hard-coded to the first panel, rather than what’s on the URL. If there’s no hash on the URL, all the panels are hidden (and thus broken). If you scroll to the bottom of the example, you’ll find a “top” link; clicking that will break our tabbing system. I’ve purposely made the page long, so that when you click on a tab, you’ll see the page scrolls to the top of the tab. Not a huge deal, but a bit annoying. From our criteria at the start of this post, we’ve already solved items 4 and 5. Not a terrible start. Let’s solve items 1 through 3 next. Using the URL to initialise correctly and protect from breakage Instead of arbitrarily picking the first panel from our collection, the code should read the current location.hash and use that if it’s available. The problem is: what if the hash on the URL isn’t actually for a tab? The solution here is that we need to cache a list of known panel IDs. In fact, well-written DOM scripting won’t continuously search the DOM for nodes. That is, when the show function kept calling $('.tab').each(...) it was wasteful. The result of $('.tab') should be cached. So now the code will collect all the tabs, then find the related panels from those tabs, and we’ll use that list to double the values we give the show function (during initialisation, for instance). // collect all the tabs var tabs = $('.tab'); // get an array of the panel ids (from the anchor hash) var targets = tabs.map(function () { return this.hash; }).get(); // use those ids to get a jQuery collection of panels var panels = $(targets.join(',')); function show(id) { // if no value was given, let's take the first panel if (!id) { id = targets[0]; } // remove the selected class from the tabs, // and add it back to the one the user selected tabs.removeClass('selected').filter(function () { return (this.hash === id); }).addClass('selected'); // now hide all the panels, then filter to // the one we're interested in, and show it panels.hide().filter(id).show(); } $(window).on('hashchange', function () { var hash = location.hash; if (targets.indexOf(hash) !== -1) { show(hash); } }); // initialise show(targets.indexOf(location.hash) !== -1 ? location.hash : ''); The core of working out which tab to initialise with is solved in that last line: is there a location.hash? Is it in our list of valid targets (panels)? If so, select that tab. The second breakage we saw in the original demo was that clicking the “top” link would break our tabs. This was due to the hashchange event firing and the code didn’t validate the hash that was passed. Now this happens, the panels don’t break. So far we’ve got a tabbing system that: Works without JavaScript. Supports right-click and Shift-click (and doesn’t select in these cases). Loads the correct panel if you start with a hash. Supports native browser navigation. Supports the keyboard. The only annoying problem we have now is that the page jumps when a tab is selected. That’s due to the browser following the default behaviour of an internal link on the page. To solve this, things are going to get a little hairy, but it’s all for a good cause. Removing the jump to tab You’d be forgiven for thinking you just need to hook a click handler and return false. It’s what I started with. Only that’s not the solution. If we add the click handler, it breaks all the right-click and Shift-click support. There may be another way to solve this, but what follows is the way I found – and it works. It’s just a bit… hairy, as I said. We’re going to strip the id attribute off the target panel when the user tries to navigate to it, and then put it back on once the show code starts to run. This change will mean the browser has nowhere to navigate to for that moment, and won’t jump the page. The change involves the following: Add a click handle that removes the id from the target panel, and cache this in a target variable that we’ll use later in hashchange (see point 4). In the same click handler, set the location.hash to the current link’s hash. This is important because it forces a hashchange event regardless of whether the URL actually changed, which prevents the tabs breaking (try it yourself by removing this line). For each panel, put a backup copy of the id attribute in a data property (I’ve called it old-id). When the hashchange event fires, if we have a target value, let’s put the id back on the panel. These changes result in this final code: /*global $*/ // a temp value to cache *what* we're about to show var target = null; // collect all the tabs var tabs = $('.tab').on('click', function () { target = $(this.hash).removeAttr('id'); // if the URL isn't going to change, then hashchange // event doesn't fire, so we trigger the update manually if (location.hash === this.hash) { // but this has to happen after the DOM update has // completed, so we wrap it in a setTimeout 0 setTimeout(update, 0); } }); // get an array of the panel ids (from the anchor hash) var targets = tabs.map(function () { return this.hash; }).get(); // use those ids to get a jQuery collection of panels var panels = $(targets.join(',')).each(function () { // keep a copy of what the original el.id was $(this).data('old-id', this.id); }); function update() { if (target) { target.attr('id', target.data('old-id')); target = null; } var hash = window.location.hash; if (targets.indexOf(hash) !== -1) { show(hash); } } function show(id) { // if no value was given, let's take the first panel if (!id) { id = targets[0]; } // remove the selected class from the tabs, // and add it back to the one the user selected tabs.removeClass('selected').filter(function () { return (this.hash === id); }).addClass('selected'); // now hide all the panels, then filter to // the one we're interested in, and show it panels.hide().filter(id).show(); } $(window).on('hashchange', update); // initialise if (targets.indexOf(window.location.hash) !== -1) { update(); } else { show(); } This version now meets all the criteria I mentioned in my original list, except for the ARIA roles and accessibility. Getting this support is actually very cheap to add. ARIA roles This article on ARIA tabs made it very easy to get the tabbing system working as I wanted. The tasks were simple: Add aria-role set to tab for the tabs, and tabpanel for the panels. Set aria-controls on the tabs to point to their related panel (by id). I use JavaScript to add tabindex=0 to all the tab elements. When I add the selected class to the tab, I also set aria-selected to true and, inversely, when I remove the selected class I set aria-selected to false. When I hide the panels I add aria-hidden=true, and when I show the specific panel I set aria-hidden=false. And that’s it. Very small changes to get full sign-off that the tabbing system is bulletproof and accessible. Check out the final version (and the non-jQuery version as promised). In conclusion There’s a lot of tab implementations out there, but there’s an equal amount that break the browsing paradigm and the simple linkability of content. Clearly there’s a special hell for those tab systems that don’t even use links, but I think it’s clear that even in something that’s relatively simple, it’s the small details that make or break the user experience. Obviously there are corners I’ve not explored, like when there’s more than one set of tabs on a page, and equally whether you should deliver the initial markup with the correct tab selected. I think the answer lies in using query strings in combination with hashes on the URL, but maybe that’s for another year! 2015 Remy Sharp remysharp 2015-12-22T00:00:00+00:00 https://24ways.org/2015/how-tabs-should-work/ code
65 The Accessibility Mindset Accessibility is often characterized as additional work, hard to learn and only affecting a small number of people. Those myths have no logical foundation and often stem from outdated information or misconceptions. Indeed, it is an additional skill set to acquire, quite like learning new JavaScript frameworks, CSS layout techniques or new HTML elements. But it isn’t particularly harder to learn than those other skills. A World Health Organization (WHO) report on disabilities states that, [i]ncluding children, over a billion people (or about 15% of the world’s population) were estimated to be living with disability. Being disabled is not as unusual as one might think. Due to chronic health conditions and older people having a higher risk of disability, we are also currently paving the cowpath to an internet that we can still use in the future. Accessibility has a very close relationship with usability, and advancements in accessibility often yield improvements in the usability of a website. Websites are also more adaptable to users’ needs when they are built in an accessible fashion. Beyond the bare minimum In the time of table layouts, web developers could create code that passed validation rules but didn’t adhere to the underlying semantic HTML model. We later developed best practices, like using lists for navigation, and with HTML5 we started to wrap those lists in nav elements. Working with accessibility standards is similar. The Web Content Accessibility Guidelines (WCAG) 2.0 can inform your decision to make websites accessible and can be used to test that you met the success criteria. What it can’t do is measure how well you met them. W3C developed a long list of techniques that can be used to make your website accessible, but you might find yourself in a situation where you need to adapt those techniques to be the most usable solution for your particular problem. The checkbox below is implemented in an accessible way: The input element has an id and the label associated with the checkbox refers to the input using the for attribute. The hover area is shown with a yellow background and a black dotted border: Open video The label is clickable and the checkbox has an accessible description. Job done, right? Not really. Take a look at the space between the label and the checkbox: Open video The gutter is created using a right margin which pushes the label to the right. Users would certainly expect this space to be clickable as well. The simple solution is to wrap the label around the checkbox and the text: Open video You can also set the label to display:block; to further increase the clickable area: Open video And while we’re at it, users might expect the whole box to be clickable anyway. Let’s apply the CSS that was on a wrapping div element to the label directly: Open video The result enhances the usability of your form element tremendously for people with lower dexterity, using a voice mouse, or using touch interfaces. And we only used basic HTML and CSS techniques; no JavaScript was added and not one extra line of CSS. <form action="#"> <label for="uniquecheckboxid"> <input type="checkbox" name="checkbox" id="uniquecheckboxid" /> Checkbox 4 </label> </form> Button Example The button below looks like a typical edit button: a pencil icon on a real button element. But if you are using a screen reader or a braille keyboard, the button is just read as “button” without any indication of what this button is for. Open video A screen reader announcing a button. Contains audio. The code snippet shows why the button is not properly announced: <button> <span class="icon icon-pencil"></span> </button> An icon font is used to display the icon and no text alternative is given. A possible solution to this problem is to use the title or aria-label attributes, which solves the alternative text use case for screen reader users: Open video A screen reader announcing a button with a title. However, screen readers are not the only way people with and without disabilities interact with websites. For example, users can reset or change font families and sizes at will. This helps many users make websites easier to read, including people with dyslexia. Your icon font might be replaced by a font that doesn’t include the glyphs that are icons. Additionally, the icon font may not load for users on slow connections, like on mobile phones inside trains, or because users decided to block external fonts altogether. The following screenshots show the mobile GitHub view with and without external fonts: The mobile GitHub view with and without external fonts. Even if the title/aria-label approach was used, the lack of visual labels is a barrier for most people under those circumstances. One way to tackle this is using the old-fashioned img element with an appropriate alt attribute, but surprisingly not every browser displays the alternative text visually when the image doesn’t load. <button> <img src="icon-pencil.svg" alt="Edit"> </button> Providing always visible text is an alternative that can work well if you have the space. It also helps users understand the meaning of the icons. <button> <span class="icon icon-pencil"></span> Edit </button> This also reads just fine in screen readers: Open video A screen reader announcing the revised button. Clever usability enhancements don’t stop at a technical implementation level. Take the BBC iPlayer pages as an example: when a user navigates the “captioned videos” or “audio description” categories and clicks on one of the videos, captions or audio descriptions are automatically switched on. Small things like this enhance the usability and don’t need a lot of engineering resources. It is more about connecting the usability dots for people with disabilities. Read more about the BBC iPlayer accessibility case study. More information W3C has created several documents that make it easier to get the gist of what web accessibility is and how it can benefit everyone. You can find out “How People with Disabilities Use the Web”, there are “Tips for Getting Started” for developers, designers and content writers. And for the more seasoned developer there is a set of tutorials on web accessibility, including information on crafting accessible forms and how to use images in an accessible way. Conclusion You can only produce a web project with long-lasting accessibility if accessibility is not an afterthought. Your organization, your division, your team need to think about accessibility as something that is the foundation of your website or project. It needs to be at the same level as performance, code quality and design, and it needs the same attention. Users often don’t notice when those fundamental aspects of good website design and development are done right. But they’ll always know when they are implemented poorly. If you take all this into consideration, you can create accessibility solutions based on the available data and bring accessibility to people who didn’t know they’d need it: Open video In this video from the latest Apple keynote, the Apple TV is operated by voice input through a remote. When the user asks “What did she say?” the video jumps back fifteen seconds and captions are switched on for a brief time. All three, the remote, voice input and captions have their roots in assisting people with disabilities. Now they benefit everyone. 2015 Eric Eggert ericeggert 2015-12-17T00:00:00+00:00 https://24ways.org/2015/the-accessibility-mindset/ code
68 Grid, Flexbox, Box Alignment: Our New System for Layout Three years ago for 24 ways 2012, I wrote an article about a new CSS layout method I was excited about. A specification had emerged, developed by people from the Internet Explorer team, bringing us a proper grid system for the web. In 2015, that Internet Explorer implementation is still the only public implementation of CSS grid layout. However, in 2016 we should be seeing it in a new improved form ready for our use in browsers. Grid layout has developed hidden behind a flag in Blink, and in nightly builds of WebKit and, latterly, Firefox. By being developed in this way, breaking changes could be safely made to the specification as no one was relying on the experimental implementations in production work. Another new layout method has emerged over the past few years in a more public and perhaps more painful way. Shipped prefixed in browsers, The flexible box layout module (flexbox) was far too tempting for developers not to use on production sites. Therefore, as changes were made to the specification, we found ourselves with three different flexboxes, and browser implementations that did not match one another in completeness or in the version of specified features they supported. Owing to the different ways these modules have come into being, when I present on grid layout it is often the very first time someone has heard of the specification. A question I keep being asked is whether CSS grid layout and flexbox are competing layout systems, as though it might be possible to back the loser in a CSS layout competition. The reality, however, is that these two methods will sit together as one system for doing layout on the web, each method playing to certain strengths and serving particular layout tasks. If there is to be a loser in the battle of the layouts, my hope is that it will be the layout frameworks that tie our design to our markup. They have been a necessary placeholder while we waited for a true web layout system, but I believe that in a few years time we’ll be easily able to date a website to circa 2015 by seeing <div class="row"> or <div class="col-md-3"> in the markup. In this article, I’m going to take a look at the common features of our new layout systems, along with a couple of examples which serve to highlight the differences between them. To see the grid layout examples you will need to enable grid in your browser. The easiest thing to do is to enable the experimental web platform features flag in Chrome. Details of current browser support can be found here. Relationship Items only become flex or grid items if they are a direct child of the element that has display:flex, display:grid or display:inline-grid applied. Those direct children then understand themselves in the context of the complete layout. This makes many things possible. It’s the lack of relationship between elements that makes our existing layout methods difficult to use. If we float two columns, left and right, we have no way to tell the shorter column to extend to the height of the taller one. We have expended a lot of effort trying to figure out the best way to make full-height columns work, using techniques that were never really designed for page layout. At a very simple level, the relationship between elements means that we can easily achieve full-height columns. In flexbox: See the Pen Flexbox equal height columns by rachelandrew (@rachelandrew) on CodePen. And in grid layout (requires a CSS grid-supporting browser): See the Pen Grid equal height columns by rachelandrew (@rachelandrew) on CodePen. Alignment Full-height columns rely on our flex and grid items understanding themselves as part of an overall layout. They also draw on a third new specification: the box alignment module. If vertical centring is a gift you’d like to have under your tree this Christmas, then this is the box you’ll want to unwrap first. The box alignment module takes the alignment and space distribution properties from flexbox and applies them to other layout methods. That includes grid layout, but also other layout methods. Once implemented in browsers, this specification will give us true vertical centring of all the things. Our examples above achieved full-height columns because the default value of align-items is stretch. The value ensured our columns stretched to the height of the tallest. If we want to use our new vertical centring abilities on all items, we would set align-items:center on the container. To align one flex or grid item, apply the align-self property. The examples below demonstrate these alignment properties in both grid layout and flexbox. The portrait image of Widget the cat is aligned with the default stretch. The other three images are aligned using different values of align-self. Take a look at an example in flexbox: See the Pen Flexbox alignment by rachelandrew (@rachelandrew) on CodePen. And also in grid layout (requires a CSS grid-supporting browser): See the Pen Grid alignment by rachelandrew (@rachelandrew) on CodePen. The alignment properties used with CSS grid layout. Fluid grids A cornerstone of responsive design is the concept of fluid grids. “[…]every aspect of the grid—and the elements laid upon it—can be expressed as a proportion relative to its container.” —Ethan Marcotte, “Fluid Grids” The method outlined by Marcotte is to divide the target width by the context, then use that value as a percentage value for the width property on our element. h1 { margin-left: 14.575%; /* 144px / 988px = 0.14575 */ width: 70.85%; /* 700px / 988px = 0.7085 */ } In more recent years, we’ve been able to use calc() to simplify this (at least, for those of us able to drop support for Internet Explorer 8). However, flexbox and grid layout make fluid grids simple. The most basic of flexbox demos shows this fluidity in action. The justify-content property – another property defined in the box alignment module – can be used to create an equal amount of space between or around items. As the available width increases, more space is assigned in proportion. In this demo, the list items are flex items due to display:flex being added to the ul. I have given them a maximum width of 250 pixels. Any remaining space is distributed equally between the items as the justify-content property has a value of space-between. See the Pen Flexbox: justify-content by rachelandrew (@rachelandrew) on CodePen. For true fluid grid-like behaviour, your new flexible friends are flex-grow and flex-shrink. These properties give us the ability to assign space in proportion. The flexbox flex property is a shorthand for: flex-grow flex-shrink flex-basis The flex-basis property sets the default width for an item. If flex-grow is set to 0, then the item will not grow larger than the flex-basis value; if flex-shrink is 0, the item will not shrink smaller than the flex-basis value. flex: 1 1 200px: a flexible box that can grow and shrink from a 200px basis. flex: 0 0 200px: a box that will be 200px and cannot grow or shrink. flex: 1 0 200px: a box that can grow bigger than 200px, but not shrink smaller. In this example, I have a set of boxes that can all grow and shrink equally from a 100 pixel basis. See the Pen Flexbox: flex-grow by rachelandrew (@rachelandrew) on CodePen. What I would like to happen is for the first element, containing a portrait image, to take up less width than the landscape images, thus keeping it more in proportion. I can do this by changing the flex-grow value. By giving all the items a value of 1, they all gain an equal amount of the available space after the 100 pixel basis has been worked out. If I give them all a value of 3 and the first box a value of 1, the other boxes will be assigned three parts of the available space while box 1 is assigned only one part. You can see what happens in this demo: See the Pen Flexbox: flex-grow by rachelandrew (@rachelandrew) on CodePen. Once you understand flex-grow, you should easily be able to grasp how the new fraction unit (fr, defined in the CSS grid layout specification) works. Like flex-grow, this unit allows us to assign available space in proportion. In this case, we assign the space when defining our track sizes. In this demo (which requires a CSS grid-supporting browser), I create a four-column grid using the fraction unit to define my track sizes. The first track is 1fr in width, and the others 2fr. grid-template-columns: 1fr 2fr 2fr 2fr; See the Pen Grid fraction units by rachelandrew (@rachelandrew) on CodePen. The four-track grid. Separation of concerns My younger self petitioned my peers to stop using tables for layout and to move to CSS. One of the rallying cries of that movement was the concept of separating our source and content from how they were displayed. It was something of a failed promise given the tools we had available: the display leaked into the markup with the need for redundant elements to cope with browser bugs, or visual techniques that just could not be achieved without supporting markup. Browsers have improved, but even now we can find ourselves compromising the ideal document structure so we can get the layout we want at various breakpoints. In some ways, the situation has returned to tables-for-layout days. Many of the current grid frameworks rely on describing our layout directly in the markup. We add divs for rows, and classes to describe the number of desired columns. We nest these constructions of divs inside one another. Here is a snippet from the Bootstrap grid examples – two columns with two nested columns: <div class="row"> <div class="col-md-8"> .col-md-8 <div class="row"> <div class="col-md-6"> .col-md-6 </div> <div class="col-md-6"> .col-md-6 </div> </div> </div> <div class="col-md-4"> .col-md-4 </div> </div> Not a million miles away from something I might have written in 1999. <table> <tr> <td class="col-md-8"> .col-md-8 <table> <tr> <td class="col-md-6"> .col-md-6 </td> <td class="col-md-6"> .col-md-6 </td> </tr> </table> </td> <td class="col-md-4"> .col-md-4 </td> </tr> </table> Grid and flexbox layouts do not need to be described in markup. The layout description happens entirely in the CSS, meaning that elements can be moved around from within the presentation layer. Flexbox gives us the ability to reverse the flow of elements, but also to set the order of elements with the order property. This is demonstrated here, where Widget the cat is in position 1 in the source, but I have used the order property to display him after the things that are currently unimpressive to him. See the Pen Flexbox: order by rachelandrew (@rachelandrew) on CodePen. Grid layout takes this a step further. Where flexbox lets us set the order of items in a single dimension, grid layout gives us the ability to position things in two dimensions: both rows and columns. Defined in the CSS, this positioning can be changed at any breakpoint without needing additional markup. Compare the source order with the display order in this example (requires a CSS grid-supporting browser): See the Pen Grid positioning in two dimensions by rachelandrew (@rachelandrew) on CodePen. Laying out our items in two dimensions using grid layout. As these demos show, a straightforward way to decide if you should use grid layout or flexbox is whether you want to position items in one dimension or two. If two, you want grid layout. A note on accessibility and reordering The issues arising from this powerful ability to change the way items are ordered visually from how they appear in the source have been the subject of much discussion. The current flexbox editor’s draft states “Authors must use order only for visual, not logical, reordering of content. Style sheets that use order to perform logical reordering are non-conforming.” —CSS Flexible Box Layout Module Level 1, Editor’s Draft (3 December 2015) This is to ensure that non-visual user agents (a screen reader, for example) can rely on the document source order as being correct. Take care when reordering that you do so from the basis of a sound document that makes sense in terms of source order. Avoid using visual order to convey meaning. Automatic content placement with rules Having control over the order of items, or placing items on a predefined grid, is nice. However, we can often do that already with one method or another and we have frameworks and tools to help us. Tools such as Susy mean we can even get away from stuffing our markup full of grid classes. However, our new layout methods give us some interesting new possibilities. Something that is useful to be able to do when dealing with content coming out of a CMS or being pulled from some other source, is to define a bunch of rules and then say, “Display this content, using these rules.” As an example of this, I will leave you with a Christmas poem displayed in a document alongside Widget the cat and some of the decorations that are bringing him no Christmas cheer whatsoever. The poem is displayed first in the source as a set of paragraphs. I’ve added a class identifying each of the four paragraphs but they are displayed in the source as one text. Below that are all my images, some landscape and some portrait; I’ve added a class of landscape to the landscape ones. The mobile-first grid is a single column and I use line-based placement to explicitly position my poem paragraphs. The grid layout auto-placement rules then take over and place the images into the empty cells left in the grid. At wider screen widths, I declare a four-track grid, and position my poem around the grid, keeping it in a readable order. I also add rules to my landscape class, stating that these items should span two tracks. Once again the grid layout auto-placement rules position the rest of my images without my needing to position them. You will see that grid layout takes items out of source order to fill gaps in the grid. It does this because I have set the property grid-auto-flow to dense. The default is sparse meaning that grid will not attempt this backfilling behaviour. Take a look and play around with the full demo (requires a CSS grid layout-supporting browser): See the Pen Grid auto-flow with rules by rachelandrew (@rachelandrew) on CodePen. The final automatic placement example. My wish for 2016 I really hope that in 2016, we will see CSS grid layout finally emerge from behind browser flags, so that we can start to use these features in production — that we can start to move away from using the wrong tools for the job. However, I also hope that we’ll see developers fully embracing these tools as the new system that they are. I want to see people exploring the possibilities they give us, rather than trying to get them to behave like the grid systems of 2015. As you discover these new modules, treat them as the new paradigm that they are, get creative with them. And, as you find the edges of possibility with them, take that feedback to the CSS Working Group. Help improve the layout systems that will shape the look of the future web. Some further reading I maintain a site of grid layout examples and resources at Grid by Example. The three CSS specifications I’ve discussed can be found as editor’s drafts: CSS grid, flexbox, box alignment. I wrote about the last three years of my interest in CSS grid layout, which gives something of a history of the specification. More examples of box alignment and grid layout. My presentation at Fronteers earlier this year, in which I explain more about these concepts. 2015 Rachel Andrew rachelandrew 2015-12-15T00:00:00+00:00 https://24ways.org/2015/grid-flexbox-box-alignment-our-new-system-for-layout/ code
71 Upping Your Web Security Game When I started working in web security fifteen years ago, web development looked very different. The few non-static web applications were built using a waterfall process and shipped quarterly at best, making it possible to add security audits before every release; applications were deployed exclusively on in-house servers, allowing Info Sec to inspect their configuration and setup; and the few third-party components used came from a small set of well-known and trusted providers. And yet, even with these favourable conditions, security teams were quickly overwhelmed and called for developers to build security in. If the web security game was hard to win before, it’s doomed to fail now. In today’s web development, every other page is an application, accepting inputs and private data from users; software is built continuously, designed to eliminate manual gates, including security gates; infrastructure is code, with servers spawned with little effort and even less security scrutiny; and most of the code in a typical application is third-party code, pulled in through open source repositories with rarely a glance at who provided them. Security teams, when they exist at all, cannot solve this problem. They are vastly outnumbered by developers, and cannot keep up with the application’s pace of change. For us to have a shot at making the web secure, we must bring security into the core. We need to give it no less attention than that we give browser compatibility, mobile design or web page load times. More broadly, we should see security as an aspect of quality, expecting both ourselves and our peers to address it, and taking pride when we do it well. Where To Start? Embracing security isn’t something you do overnight. A good place to start is by reviewing things you’re already doing – and trying to make them more secure. Here are three concrete steps you can take to get going. HTTPS Threats begin when your system interacts with the outside world, which often means HTTP. As is, HTTP is painfully insecure, allowing attackers to easily steal and manipulate data going to or from the server. HTTPS adds a layer of crypto that ensures the parties know who they’re talking to, and that the information exchanged can be neither modified nor sniffed. HTTPS is relevant to any site. If your non-HTTPS site holds opinions, reading it may get your users in trouble with employers or governments. If your users believe what you say, attackers can modify your non-HTTPS to take advantage of and abuse that trust. If you want to use new browser technologies like HTTP2 and service workers, your site will need to be HTTPS. And if you want to be discovered on the web, using HTTPS can help your Google ranking. For more details on why I think you should make the switch to HTTPS, check out this post, these slides and this video. Using HTTPS is becoming easier and cheaper. Here are a few free tools that can help: Get free and easy HTTPS delivery from Cloudflare (be sure to use “Full SSL”!) Get a free and automation-friendly certificate from Let’s Encrypt (now in open beta). Test how well your HTTPS is set up using SSLTest. Other vendors and platforms are rapidly simplifying and reducing the cost of their HTTPS offering, as demand and importance grows. Two-Factor Authentication The most sensitive data is usually stored behind a login, and the authentication process is the primary gate in front of this data. Making this process secure has many aspects, including using HTTPS when accepting credentials, having a strong password policy, never storing the password, and more. All of these are important, but the best single step to boost your authentication security is to introduce two-factor authentication (2FA). Adding 2FA usually means prompting users for an additional one-time code when logging in, which they get via SMS or a mobile app (e.g. Google Authenticator). This code is short-lived and is extremely hard for a remote attacker to guess, thus vastly reducing the risk a leaked or easily guessed password presents. The typical algorithm for 2FA is based on an IETF standard called the time-based one-time password (TOTP) algorithm, and it isn’t that hard to implement. Joel Franusic wrote a great post on implementing 2FA; modules like speakeasy make it even easier; and you can swap SMS with Google Authenticator or your own app if you prefer. If you don’t want to build 2FA support yourself, you can purchase two/multi-factor authentication services from vendors such as DuoSecurity, Auth0, Clef, Hypr and others. If implementing 2FA still feels like too much work, you can also choose to offload your entire authentication process to an OAuth-based federated login. Many companies offer this today, including Facebook, Google, Twitter, GitHub and others. These bigger players tend to do authentication well and support 2FA, but you should consider what data you’re sharing with them in the process. Tracking Known Vulnerabilities Most of the code in a modern application was actually written by third parties, and pulled into your app as frameworks, modules and libraries. While using these components makes us much more productive, along with their functionality we also adopt their security flaws. To make things worse, some of these flaws are well-known vulnerabilities, making it easy for hackers to take advantage of them in an attack. This is a real problem and happens on pretty much every platform. Do you develop in Java? In 2014, over 6% of Java modules downloaded from Maven had a known severe security issue, the typical Java applications containing 24 flaws. Are you coding in Node.js? Roughly 14% of npm packages carry a known vulnerability, and over 60% of dev shops find vulnerabilities in their code. 30% of Docker Hub containers include a high priority known security hole, and 60% of the top 100,000 websites use client-side libraries with known security gaps. To find known security issues, take stock of your dependencies and match them against language-specific lists such as Snyk’s vulnerability DB for Node.js, rubysec for Ruby, victims-db for Python and OWASP’s Dependency Check for Java. Once found, you can fix most issues by upgrading the component in question, though that may be tricky for indirect dependencies. This process is still way too painful, which means most teams don’t do it. The Snyk team and I are hoping to change that by making it as easy as possible to find, fix and monitor known vulnerabilities in your dependencies. Snyk’s wizard will help you find and fix these issues through guided upgrades and patches, and adding Snyk’s test to your continuous integration and deployment (CI/CD) will help you stay secure as your code evolves. Note that newly disclosed vulnerabilities usually impact old code – the one you’re running in production. This means you have to stay alert when new vulnerabilities are disclosed, so you can fix them before attackers can exploit them. You can do so by subscribing to vulnerability lists like US-CERT, OSVDB and NVD. Snyk’s monitor will proactively let you know about new disclosures relevant to your code, but only for Node.js for now – you can register to get updated when we expand. Securing Yourself In addition to making your application secure, you should make the contributors to that application secure – including you. Earlier this year we’ve seen attackers target mobile app developers with a malicious Xcode. The real target, however, wasn’t these developers, but rather the users of the apps they create. That you create. Securing your own work environment is a key part of keeping your apps secure, and your users from being compromised. There’s no single step that will make you fully secure, but here are a few steps that can make a big impact: Use 2FA on all the services related to the application, notably source control (e.g. GitHub), cloud platform (e.g. AWS), CI/CD, CDN, DNS provider and domain registrar. If an attacker compromises any one of those, they could modify or replace your entire application. I’d recommend using 2FA on all your personal services too. Use a password manager (e.g. 1Password, LastPass) to ensure you have a separate and complex password for each service. Some of these services will get hacked, and passwords will leak. When that happens, don’t let the attackers access your other systems too. Secure your workstation. Be careful what you download, lock your screen when you walk away, change default passwords on services you install, run antivirus software, etc. Malware on your machine can translate to malware in your applications. Be very wary of phishing. Smart attackers use ‘spear phishing’ techniques to gain access to specific systems, and can trick even security savvy users. There are even phishing scams targeting users with 2FA. Be alert to phishy emails. Don’t install things through curl <somewhere-on-the-web> | sudo bash, especially if the URL is on GitHub, meaning someone else controls it. Don’t do it on your machines, and definitely don’t do it in your CI/CD systems. Seriously. Staying secure should be important to you personally, but it’s doubly important when you have privileged access to an application. Such access makes you a way to reach many more users, and therefore a more compelling target for bad actors. A Culture of Security Using HTTPS, enabling two-factor authentication and fixing known vulnerabilities are significant steps in building security at your core. As you implement them, remember that these are just a few steps in a longer journey. The end goal is to embrace security as an aspect of quality, and accept we all share the responsibility of keeping ourselves – and our users – safe. 2015 Guy Podjarny guypodjarny 2015-12-11T00:00:00+00:00 https://24ways.org/2015/upping-your-web-security-game/ code
79 Responsive Images: What We Thought We Needed If you were to read a web designer’s Christmas wish list, it would likely include a solution for displaying images responsively. For those concerned about users downloading unnecessary image data, or serving images that look blurry on high resolution displays, finding a solution has become a frustrating quest. Having experimented with complex and sometimes devilish hacks, consensus is forming around defining new standards that could solve this problem. Two approaches have emerged. The <picture> element markup pattern was proposed by Mat Marquis and is now being developed by the Responsive Images Community Group. By providing a means of declaring multiple sources, authors could use media queries to control which version of an image is displayed and under what conditions: <picture width="500" height="500"> <source media="(min-width: 45em)" src="large.jpg"> <source media="(min-width: 18em)" src="med.jpg"> <source src="small.jpg"> <img src="small.jpg" alt=""> <p>Accessible text</p> </picture> A second proposal put forward by Apple, the srcset attribute, uses a more concise syntax intended for use with the <img> element, although it could be compatible with the <picture> element too. This would allow authors to provide a set of images, but with the decision on which to use left to the browser: <img src="fallback.jpg" alt="" srcset="small.jpg 640w 1x, small-hd.jpg 640w 2x, med.jpg 1x, med-hd.jpg 2x "> Enter Scrooge Men’s courses will foreshadow certain ends, to which, if persevered in, they must lead. Ebenezer Scrooge Given the complexity of this issue, there’s a heated debate about which is the best option. Yet code belies a certain truth. That both feature verbose and opaque syntax, I’m not sure either should find its way into the browser – especially as alternative approaches have yet to be fully explored. So, as if to dampen the festive cheer, here are five reasons why I believe both proposals are largely redundant. 1. We need better formats, not more markup As we move away from designs defined with fixed pixel values, bitmap images look increasingly unsuitable. While simple images and iconography can use scalable vector formats like SVG, for detailed photographic imagery, raster formats like GIF, PNG and JPEG remain the only suitable option. There is scope within current formats to account for varying bandwidth but this requires cooperation from browser vendors. Newer formats like JPEG2000 and WebP generate higher quality images with smaller file sizes, but aren’t widely supported. While it’s tempting to try to solve this issue by inventing new markup, the crux of it remains at the file level. Daan Jobsis’s experimentation with image compression strengthens this argument. He discovered that by increasing the dimensions of a JPEG image while simultaneously reducing its quality, a smaller files could be produced, with the resulting image looking just as good on both standard and high-resolution displays. This may be a hack in lieu of a more permanent solution, but it’s applied in the right place. Easy to accomplish with existing tools and without compatibility issues, it has few downsides. Further experimentation in this area should be encouraged, with standardisation efforts more helpful if focused on developing new image formats or, preferably, extending existing ones. 2. Art direction doesn’t belong in markup A desired benefit of the <picture> markup pattern is to allow for greater art direction. For example, rather than scaling down images on smaller displays to the point that their content is hard to discern, we could present closer crops instead: This can be achieved with CSS of course, although with a download penalty for those parts of an image not shown. This point may be negligible, however, since in the context of adaptable layouts, these hidden areas may end up being revealed anyway. Art direction concerns design, not content. If we wish to maintain a separation of concerns, including presentation within our markup seems misguided. 3. The size of a display has little relation to the size of an image By using media queries, the <picture> element allows authors to choose which characteristics of the screen or viewport to query for different images to be displayed. In developing sites at Clearleft, we have noticed that the viewport is essentially arbitrary, with the size of an image’s containing element more important. For example, look at how this grid of images may adapt at different viewport widths: As we build more modular systems, components need to be adaptable in and of themselves. There is a case to be made for developing more contextual methods of querying, rather than those based on attributes of the display. 4. We haven’t lived with the problem long enough A key strength of the web is that the underlying platform can be continually iterated. This can also be problematic if snap judgements are made about what constitutes an improvement. The early history of the web is littered with such examples, be it the perceived need for blinking text or inline typographic styling. To build a platform for the future, additions to it should be carefully considered. And if we want more consistent support across browsers, burdening vendors with an ever increasing list of features seems counterproductive. Only once the need for a new feature is sufficiently proven, should we look to standardise it. Before we could declare hover effects, rounded corners and typographic styling in CSS, we used JavaScript as a polyfill. Sure, doing so was painful, but use cases were fully explored, and the CSS specification better reflected the needs of authors. 5. Images and the web aesthetic The srcset proposal has emerged from a company that markets its phones as being able to browse the real – yet squashed down, tapped and zoomable – web. Perhaps Apple should make its own website responsive before suggesting how the rest of us should do so. Converserly, while the <picture> proposal has the backing of a few respected developers and designers, it was born out of the work Mat Marquis and Filament Group did for the Boston Globe. As the first large-scale responsive design, this was a landmark project that ignited the responsive web design movement and proved its worth. But it was the first. Its design shares a vernacular to that of contemporary newspaper websites, with a columnar, image-laden and densely packed layout. Compared to more recent examples – Quartz, The Next Web and the New York Times Skimmer – it feels out of step with the future direction of news sites. In seeking out a truer aesthetic for the web in which software interfaces have greater influence, we might discover that the need for responsive images isn’t as great as originally thought. Building for the future With responsive design, we’ve accepted the idea that a fully fluid layout, rather than a set of fixed layouts, is best suited to the web’s unpredictable nature. Current responsive image proposals are antithetical to this approach. We need solutions that lack complexity, are device-agnostic and work within existing workflows. Any proposal that requires different versions of the same image to be created, is likely to have to acquiesce under the pressure of reality. While it’s easy to get distracted about the size and quality of an image, and how we might choose to serve it, often the simplest solution is not to include it at all. After years of gluttonous design practice, in which fast connections and expansive display sizes were an accepted norm, we have got use to filling pages with needless images and countless items of page furniture. To design more adaptable experiences, the presence of every element needs to be questioned, for its existence requires additional data to be downloaded or futher complexity within a design system. Conditional loading techniques mean that the inclusion of images is no longer a binary choice, but can instead appear in a progressively enhanced manner. So here is my proposal. Instead of spending the next year worrying about responsive images, let’s embrace the constraints of the medium, and seek out new solutions that can work within them. 2012 Paul Lloyd paulrobertlloyd 2012-12-11T00:00:00+00:00 https://24ways.org/2012/responsive-images-what-we-thought-we-needed/ code
80 HTML5 Video Bumpers Video is a bigger part of the web experience than ever before. With native browser support for HTML5 video elements freeing us from the tyranny of plugins, and the availability of faster internet connections to the workplace, home and mobile networks, it’s now pretty straightforward to publish video in a way that can be consumed in all sorts of ways on all sorts of different web devices. I recently worked on a project where the client had shot some dedicated video shorts to publish on their site. They also had some five-second motion graphics produced to top and tail the videos with context and branding. This pretty common requirement is a great idea on the web, where a user might land at your video having followed a link and be viewing a page without much context. Known as bumpers, these short introduction clips help brand a video and make it look a lot more professional. Adding bumpers to a video The simplest way to add bumpers to a video would be to edit them on to the start and end of the video file itself. Cooking the bumpers into the video file is easy, but should you ever want to update them it can become a real headache. If the branding needs updating, for example, you’d need to re-edit and re-encode all your videos. Not a fun task. What if the bumpers could be added dynamically? That would enable you to use the same bumper for multiple videos (decreasing download time for users who might watch more than one) and to update the bumpers whenever you wanted. You could change them seasonally, update them for special promotions, run different advertising slots, perform multivariate testing, or even target different bumpers to different users. The trade-off, of course, is that if you dynamically add your bumpers, there’s a chance that a user in a given circumstance might not see the bumper. For example, if the main video feature was uploaded to YouTube, you’d have no way to control the playback. As always, you need to weigh up the pros and cons and make your choice. HTML5 bumpers If you wanted to dynamically add bumpers to your HTML5 video, how would you go about it? That was the question I found myself needing to answer for this particular client project. My initial thought was to treat it just like an image slideshow. If I were building a slideshow that moved between images, I’d use CSS absolute positioning with z-index to stack the images up on top of each other in a pile, with the first image on top. To transition to the second image, I’d use JavaScript to fade the top image out, revealing the second image beneath it. Now that video is just a native object in the DOM, just like an image, why not do the same? Stack the videos up with the opening bumper on top, listen for the video’s onended event, and fade it out to reveal the main feature behind. Good idea, right? Wrong Remember that this is the web. It’s never going to be that easy. The problem here is that many non-desktop devices use native, dedicated video players. Think about watching a video on a mobile phone – when you play the video, the phone often goes full-screen in its native player, leaving the web page behind. There’s no opportunity to fade or switch z-index, as the video isn’t being viewed in the page. Your page is left powerless. Powerless! So what can we do? What can we control? Those of us with particularly long memories might recall a time before CSS, when we’d have to use JavaScript to perform image rollovers. As CSS background images weren’t a practical reality, we would use lots of <img> elements, and perform a rollover by modifying the src attribute of the image. Turns out, this old trick of modifying the source can help us out with video, too. In most cases, modifying the src attribute of a <video> element, or perhaps more likely the src attribute of a source element, will swap from one video to another. Swappin’ it Let’s take a deliberately simple example of a super-basic video tag: <video src="mycat.webm" controls>no fallback coz i is lame, innit.</video> We could very simply write a script to find all video tags and give them a new src to show our bumper. <script> var videos, i, l; videos = document.getElementsByTagName('video'); for(i=0, l=videos.length; i<l; i++) { videos[i].setAttribute('src', 'bumper-in.webm'); } </script> View the example in a browser with WebM support. You’ll see that the video is swapped out for the opening bumper. Great! Beefing it up Of course, we can’t just publish video in one format. In practical use, you need a <video> element with multiple <source> elements containing your different source formats. <video controls> <source src="mycat.mp4" type="video/mp4" /> <source src="mycat.webm" type="video/webm" /> <source src="mycat.ogv" type="video/ogg" /> </video> This time, our script needs to loop through the sources, not the videos. We’ll use a regular expression replacement to swap out the file name while maintaining the correct file extension. <script> var sources, i, l, orig; sources = document.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('src'); sources[i].setAttribute('src', orig.replace(/(w+).(w+)/, 'bumper-in.$2')); // reload the video sources[i].parentNode.load(); } </script> The difference this time is that when changing the src of a <source> we need to call the .load() method on the video to get it to acknowledge the change. See the code in action, this time in a wider range of browsers. But, my video! I guess we should get the original video playing again. Keeping the same markup, we need to modify the script to do two things: Store the original src in a data- attribute so we can access it later Add an event listener so we can detect the end of the bumper playing, and load the original video back in As we need to loop through the videos this time to add the event listener, I’ve moved the .load() call into that loop. It’s a bit more efficient to call it only once after modifying all the video’s sources. <script> var videos, sources, i, l, orig; sources = document.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('src'); sources[i].setAttribute('data-orig', orig); sources[i].setAttribute('src', orig.replace(/(w+).(w+)/, 'bumper-in.$2')); } videos = document.getElementsByTagName('video'); for(i=0, l=videos.length; i<l; i++) { videos[i].load(); videos[i].addEventListener('ended', function(){ sources = this.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('data-orig'); if (orig) { sources[i].setAttribute('src', orig); } sources[i].setAttribute('data-orig',''); } this.load(); this.play(); }); } </script> Again, view the example to see the bumper play, followed by our spectacular main feature. (That’s my cat, Widget. His interests include sleeping and internet marketing.) Tidying things up The final thing to do is add our closing bumper after the main video has played. This involves the following changes: We need to keep track of whether the src has been changed, so we only play the video if it’s changed. I’ve added the modified variable to track this, and it stops us getting into a situation where the video just loops forever. Add an else to the event listener, for when the orig is false (so the main feature has been playing) to load in the end bumper. We also check that we’re not already playing the end bumper. Because looping. <script> var videos, sources, i, l, orig, current, modified; sources = document.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('src'); sources[i].setAttribute('data-orig', orig); sources[i].setAttribute('src', orig.replace(/(w+).(w+)/, 'bumper-in.$2')); } videos = document.getElementsByTagName('video'); for(i=0, l=videos.length; i<l; i++) { videos[i].load(); modified = false; videos[i].addEventListener('ended', function(){ sources = this.getElementsByTagName('source'); for(i=0, l=sources.length; i<l; i++) { orig = sources[i].getAttribute('data-orig'); if (orig) { sources[i].setAttribute('src', orig); modified = true; }else{ current = sources[i].getAttribute('src'); if (current.indexOf('bumper-out')==-1) { sources[i].setAttribute('src', current.replace(/([w]+).(w+)/, 'bumper-out.$2')); modified = true; }else{ this.pause(); modified = false; } } sources[i].setAttribute('data-orig',''); } if (modified) { this.load(); this.play(); } }); } </script> Yo ho ho, that’s a lot of JavaScript. See it in action – you should get a bumper, the cat video, and an end bumper. Of course, this code works fine for demonstrating the principle, but it’s very procedural. Nothing wrong with that, but to do something similar in production, you’d probably want to make the code more modular to ease maintainability. Besides, you may want to use a framework, rather than basic JavaScript. The end credits One really important principle here is that of progressive enhancement. If the browser doesn’t support JavaScript, the user won’t see your bumper, but they will get the main video. If the browser supports JavaScript but doesn’t allow you to modify the src (as was the case with older versions of iOS), the user won’t see your bumper, but they will get the main video. If a search engine or social media bot grabs your page and looks for content, they won’t see your bumper, but they will get the main video – which is absolutely what you want. This means that if the bumper is absolutely crucial, you may still need to cook it into the video. However, for many applications, running it dynamically can work quite well. As always, it comes down to three things: Measure your audience: know how people access your site Test the solution: make sure it works for your audience Plan for failure: it’s the web and that’s how things work ‘round these parts But most of all play around with it, have fun and build something awesome. 2012 Drew McLellan drewmclellan 2012-12-01T00:00:00+00:00 https://24ways.org/2012/html5-video-bumpers/ code
89 Direction, Distance and Destinations With all these new smartphones in the hands of lost and confused owners, we need a better way to represent distances and directions to destinations. The immediate examples that jump to mind are augmented reality apps which let you see another world through your phone’s camera. While this is interesting, there is a simpler way: letting people know how far away they are and if they are getting warmer or colder. In the app world, you can easily tap into the phone’s array of sensors such as the GPS and compass, but what people rarely know is that you can do the same with HTML. The native versus web app debate will never subside, but at least we can show you how to replicate some of the functionality progressively in HTML and JavaScript. In this tutorial, we’ll walk through how to create a simple webpage listing distances and directions of a few popular locations around the world. We’ll use JavaScript to access the device’s geolocation API and also attempt to access the compass to get a heading. Both of these APIs are documented, to be included in the W3C geolocation API specification, and can be used on both desktop and mobile devices today. To get started, we need a list of a few locations around the world. I have chosen the highest mountain peak on each continent so you can see a diverse set of distances and directions. Mountain °Latitude °Longitude Kilimanjaro -3.075833 37.353333 Vinson Massif -78.525483 -85.617147 Puncak Jaya -4.078889 137.158333 Everest 27.988056 86.925278 Elbrus 43.355 42.439167 Mount McKinley 63.0695 -151.0074 Aconcagua -32.653431 -70.011083 Source: Wikipedia We can put those into an HTML list to be styled and accessed by JavaScript to create some distance and directions calculations. The next thing we need to do is check to see if the browser and operating system have geolocation support. To do this we test to see if the function is available or not using a single JavaScript if statement. <script> // If this is true, then the method is supported and we can try to access the location if (navigator.geolocation) { navigator.geolocation.getCurrentPosition(geo_success, geo_error); } </script> The if statement will be false if geolocation support is not present, and then it is up to you to do something else instead as a fallback. For this example, we’ll do nothing since our page should work as is and only get progressively better if more functionality is available. The if statement will be true if there is support and therefore will continue inside the curly brackets to try to get the location. This should prompt the reader to accept or deny the request to get their location. If they say no, the second function callback is processed, in this case a function called geo_error; whereas if the location is available, it fires the geo_success function callback. The function geo_error(){ } isn’t that exciting. You can handle this in any way you see fit. The success function is more interesting. We get a position object passed into the function which contains a series of exciting attributes, namely the latitude and longitude of the device’s current location. function geo_success(position){ gLat = position.coords.latitude; gLon = position.coords.longitude; } Now, in the variables gLat and gLon we have the user’s approximate geographical position. We can use this information to start to calculate some distances between where they are and all the destinations. At the time of writing, you can also get position.coords.heading, but on Windows and iOS devices this returned NULL. In the future, if and when this is supported, this is also where you can easily grab the compass information. Inside the geo_success function, we want to loop through the HTML to get all of the mountain peaks’ latitudes and longitudes and compute the distance. ... $('.geo').each(function(){ // Get the lat/lon from the HTML tLat = $(this).find('.lat').html() tLon = $(this).find('.lon').html() // compute the distances between the current location and this points location dist = distance(tLat,tLon,gLat,gLon); // set the return values into something useful d = parseInt(dist[0]*10)/10; a = parseFloat(dist[1]); // display the value in the HTML and style the arrow $(this).find('.distance').html(d+' km away'); $(this).find('.direction').css('-webkit-transform','rotate(-' + a + 'deg)'); // store the arc for later use if compass is available $(this).attr('data-arc',a); } In the variable d we have the distance between the current location and the location of the mountain peak based on the Haversine Formula. The variable a is the arc, which has a value from 0 to 359.99. This will be useful later if we have compass support. Given these two values we have a distance and a heading to style the HTML. The next thing we want to do is check to see if the device has a compass and then get access to the the current heading. As we’ll see, there are several ways to do this, some of which work on certain devices but not others. The W3C geolocation spec says that, along with the coordinates, there are several other attributes: accuracy; altitude; and heading. Heading is the direction to true north, which is different than magnetic north! WebKit and Windows return NULL for the heading value, but WebKit has an experimental method to fetch the heading. If you get into accessing these sensors, you’ll have to try to catch a few of these methods to finally get a value. Assuming you do, we can move on to the more interesting display opportunities. In an ideal world, this would succeed and set a variable we’ll call compassHeading to get a value between 0 and 359.99 degrees. Now we know which direction north is, we also know the direction relative to north of the path to our destination, so we can can subtract the two values to get an arrow to display on the screen. But we’re not finished yet: we also need to get the device’s orientation (landscape or portrait) and subtract the correct amount from the angle for the arrow. Once we have a value, we can use CSS to rotate the arrow the correct number of degrees. -webkit-transform: rotate(-180deg) Not all devices support a standard way to access compass information, so in the meantime we need to use a work around. On iOS, you can use the experimental event method e.webkitCompassHeading. We want the compass to update in real time as the device is moved around, so we’ll put this inside an event listener. window.addEventListener('deviceorientation', function(e) { // Loop through all the locations on the page $('.geo').each(function(){ // get the arc value from north we computed and stored earlier destination_arc = parseInt($(this).attr('data-arc')) compassHeading = e.webkitCompassHeading + window.orientation + destination_arc; // find the arrow element and rotate it accordingly $(this).find('.direction').css('-webkit-transform','rotate(-' + compassHeading + 'deg)'); } } As the device is rotated, the compass arrow will constantly be updated. If you want to see an example, you can have a look at this page which shows the distances to all the peaks on each continent. With progressive enhancement, we slowly layer on additional functionality as we go. The reader will first see the list of locations with a latitude and longitude. If the device is capable and permissions allow, it will then compute the distance. If a compass is available, with the correct permissions it will then add the final layer which is direction. You should consider this code a stub for your projects. If you are making a hyperlocal webpage with restaurant locations, for example, then consider adding these features. Knowing not only how far away a place is, but also the direction can be hugely important, and since the compass is always active, it acts as a guide to the location. Future developments Improvements to this could include setting a timer and recalling the navigator.geolocation.getCurrentPosition() function and updating the distances. I chose very distant mountains so kilometres made sense, but you can divide again by 1,000 to convert to metres if you are dealing with much nearer places. Walking or driving would change the distances so the ability to refresh would be important. It is outside the scope of this article, but if you manage to get this HTML to work offline, then you can make a nice web app which sits on your devices’ homescreens and works even without an internet connection. This could be ideal for travellers in an unknown city looking for your destination. Just with offline storage, base64 encoding and data URIs, it is possible to embed plenty of design and functionality into a small offline webpage. Now you know how to use JavaScript to look up a destination’s location and figure out the distance and direction – never get lost again. 2012 Brian Suda briansuda 2012-12-19T00:00:00+00:00 https://24ways.org/2012/direction-distance-and-destinations/ code
91 Infinite Canvas: Moving Beyond the Page Remember Web 2.0? I do. In fact, that phrase neatly bifurcates my life on the internet. Pre-2.0, I was occupied by chatting on AOL and eventually by learning HTML so I could build sites on Geocities. Around 2002, however, I saw a WYSIWYG demo in Dreamweaver. The instructor was dragging boxes and images around a canvas. With a few clicks he was able to build a dynamic, single-page interface. Coming from the world of tables and inline HTML styles, I was stunned. As I entered college the next year, the web was blossoming: broadband, Wi-Fi, mobile (proud PDA owner, right here), CSS, Ajax, Bloglines, Gmail and, soon, Google Maps. I was a technology fanatic and a hobbyist web developer. For me, the web had long been informational. It was now rapidly becoming something else, something more: sophisticated, presentational, actionable. In 2003 we watched as the internet changed. The predominant theme of those early Web 2.0 years was the withering of Internet Explorer 6 and the triumph of web standards. Upon cresting that mountain, we looked around and collectively breathed the rarefied air of pristine HMTL and CSS, uncontaminated by toxic hacks and forks – only to immediately begin hurtling down the other side at what is, frankly, terrifying speed. Ten years later, we are still riding that rocket. Our days (and nights) are spent cramming for exams on CSS3 and RWD and Sass and RESS. We are the proud, frazzled owners of tiny pocket computers that annihilate the best laptops we could have imagined, and the architects of websites that are no longer restricted to big screens nor even segregated by device. We dragoon our sites into working any time, anywhere. At this point, we can hardly ask the spec developers to slow down to allow us to catch our breath, nor should we. It is, without a doubt, a most wonderful time to be a web developer. But despite the newfound luxury of rounded corners, gradients, embeddable fonts, low-level graphics APIs, and, glory be, shadows, the canyon between HTML and native appears to be as wide as ever. The improvements in HTML and CSS have, for the most part, been conveniences rather than fundamental shifts. What I’d like to do now, if you’ll allow me, is outline just a few of the remaining gaps that continue to separate web sites and applications from their native companions. What I’d like for Christmas There is one irritant which is the grandfather of them all, the one from which all others flow and have their being, and it is, simply, the page refresh. That’s right, the foundational principle of the web is our single greatest foe. To paraphrase a patron saint of designers everywhere, if you see a page refresh, we blew it. The page refresh brings with it, of course, many noble and lovely benefits: addressability, for one; and pagination, for another. (See also caching, resource loading, and probably half a dozen others.) Still, those concerns can be answered (and arguably answered more compellingly) by replacing the weary page with the young and hearty document. Flash may be dead, but it has many lessons yet to bequeath. Preparing a single document when the site loads allows us to engage the visitor in a smooth and engrossing experience. We have long known this, of course. Twitter was not the first to attempt, via JavaScript, to envelop the user in a single-page application, nor the first to abandon it. Our shared task is to move those technologies down the stack, to make them more primitive, so that the next Twitter can be built with the most basic combination of HTML and CSS rather than relying on complicated, slow, and unreliable scripted solutions. So, let’s take a look at what we can do, right now, that we might have a better idea of where our current tools fall short. A print magazine in HTML clothing Like many others, I suspect, one of my earliest experiences with publishing was laying out newsletters and newspapers on a computer for print. If you’ve ever used InDesign or Quark or even Microsoft Publisher, you’ll remember reflowing content from page to page. The advent of the internet signaled, in many ways, the abandonment of that model. Articles were no longer constrained by the physical limitations of paper. In shedding our chains, however, it is arguable that we’ve lost something useful. We had a self-contained and complete package, a closed loop. It was a thing that could be handled and finished, and doing so provided a sense of accomplishment that our modern, infinitely scrolling, ever-fractal web of content has stolen. For our purposes today, we will treat 24 ways as the online equivalent of that newspaper or magazine. A single year’s worth of articles could easily be considered an issue. Right now, navigating between articles means clicking on the article you’d like to view and being taken to that specific address via a page reload. If Drew wanted to, it wouldn’t be difficult to update the page in place (via JavaScript) and change the address (again via JavaScript with the History API) to reflect the new content found at the new location. But what if Drew wanted to do that without JavaScript? And what if he wanted the site to not merely load the content but actually whisk you along the page in a compelling and delightful way, à la the Mag+ demo we all saw a few years ago when the iPad was first introduced? Uh, no. We’re all familiar with websites that have attempted to go beyond the page by weaving many chunks of content together into a large document and for good reason. There is tremendous appeal in opening and exploring the canvas beyond the edges of our screens. In one rather straightforward example from last year, Mozilla contacted Full Stop to build a website promoting Aza Raskin’s proposal for a set of Creative Commons-style privacy icons. Like a lot of the sites we build (including our own), the amount of information we were presenting was minimal. In these instances, we encourage our clients to consider including everything on a single page. The result was a horizontally driven site that was, if not whimsical, at least clever and attractive to the intended audience. An experience that is taken for granted when using device-native technology is utterly, maddeningly impossible to replicate on the web without jumping through JavaScript hoops. In another, more complex example, we again had the pleasure of working with Aza earlier this year, this time on a redesign of the Massive Health website. Our assignment was to design and build a site that communicated Massive’s commitment to modern personal health. The site had to be visually and interactively stunning while maintaining a usable and clear interface for the casual visitor. Our solution was to extend the infinite company logo into a ribbon that carried the visitor through the site narrative. It also meant we’d be asking the browser to accommodate something it was never designed to handle: a non-linear design. (Be sure to play around. There’s a lot going on under the hood. We were also this close to a ZUI, if WebKit didn’t freak out when pages were scaled beyond 10×.) Despite the apparent and deliberate design simplicity, the techniques necessary to implement it are anything but. From updating the URL to moving the visitor from section to section, we’re firmly in JavaScript territory. And that’s a shame. What can we do? We might not be able to specify these layouts in HTML and CSS just yet, but that doesn’t mean we can’t learn a few new tricks while we wait. Let’s see how close we can come to recreating the privacy icons design, the Massive design, or the Mag+ design without resorting to JavaScript. A horizontally paginated site The first thing we’re going to need is the concept of a page within our HTML document. Using plain old HTML and CSS, we can stack a series of <div>s sideways (with a little assist from our new friend, the viewport-width unit, not that he was strictly necessary). All we need to know is how many pages we have. (And, boy, wouldn’t it be nice to be able to know that without having to predetermine it or use JavaScript?) .window { overflow: hidden; width: 100%; } .pages { width: 200vw; } .page { float: left; overflow: hidden; width: 100vw; } If you look carefully, you’ll see that the conceit we’ll use in the rest of the demos is in place. Despite the document containing multiple pages, only one is visible at any given time. This allows us to keep the user focused on the task (or content) at hand. By the way, you’ll need to use a modern, WebKit-based browser for these demos. I recommend downloading the WebKit nightly builds, Chrome Canary, or being comfortable with setting flags in Chrome. A horizontally paginated site, with transitions Ah, here’s the rub. We have functional navigation, but precious few cues for the user. It’s not much good shoving the visitor around various parts of the document if they don’t get the pleasant whooshing experience of the journey. You might be thinking, what about that new CSS selector, target-something…? Well, my friend, you’re on the right track. Let’s test it. We’re going to need to use a bit of sleight of hand. While we’d like to simply offset the containing element by the number of pages we’re moving (like we did on Massive), CSS alone can’t give us that information, and that means we’re going to need to fake it by expanding and collapsing pages as you navigate. Here are the bits we’re going to need: .page { -webkit-transition: width 1s; // Naturally you're going to want to include all the relevant prefixes here float: left; left: 0; overflow: hidden; position: relative; width: 100vw; } .page:not(:target) { width: 0; } Ah, but we’re not fooling anyone with that trick. As soon as you move beyond a single page, the visitor’s disbelief comes tumbling down when the linear page transitions are unaffected by the distance the pages are allegedly traveling. And you may have already noticed an even more fatal flaw: I secretly linked you to the first page rather than the unadorned URL. If you visit the same page with no URL fragment, you get a blank screen. Sure, we could force a redirect with some server-side trickery, but that feels like cheating. Perhaps if we had the CSS4 subject selector we could apply styles to the parent based on the child being targeted by the URL. We might also need a few more abilities, like determining the total number of pages and having relative sibling selectors (e.g. nth-sibling), but we’d sure be a lot closer. A horizontally paginated site, with transitions – no cheating Well, what other cards can we play? How about the checkbox hack? Sure, it’s a garish trick, but it might be the best we can do today. Check it out. label { cursor: pointer; } input { display: none; } input:not(:checked) + .page { max-height: 100vh; width: 0; } Finally, we can see the first page thanks to the state we are able to set on the appropriate radio button. Of course, now we don’t have URLs, so maybe this isn’t a winning plan after all. While our HTML and CSS toolkit may feel primitive at the moment, we certainly don’t want to sacrifice the addressability of the web. If there’s one bedrock principle, that’s it. A horizontally paginated site, with transitions – no cheating and a gorgeous homepage Gorgeous may not be the right word, but our little magazine is finally shaping up. Thanks to the CSS regions spec, we’ve got an exciting new power, the ability to begin an article in one place and bend it to our will. (Remember, your everyday browser isn’t going to work for these demos. Try the WebKit nightly build to see what we’re talking about.) As with the rest of the examples, we’re clearly abusing these features. Off-canvas layouts (you can thank Luke Wroblewski for the name) are simply not considered to be normal patterns… yet. Here’s a quick look at what’s going on: .excerpt-container { float: left; padding: 2em; position: relative; width: 100%; } .excerpt { height: 16em; } .excerpt_name_article-1, .page-1 .article-flow-region { -webkit-flow-from: article-1; } .article-content_for_article-1 { -webkit-flow-into: article-1; } The regions pattern is comprised of at least three components: a beginning; an ending; and a source. Using CSS, we’re able to define specific elements that should be available for the content to flow through. If magazine-style layouts are something you’re interested in learning more about (and you should be), be sure to check out the great work Adobe has been doing. Looking forward, and backward As designers, builders, and consumers of the web, we share a desire to see the usability and enjoyability of websites continue to rise. We are incredibly lucky to be working in a time when a three-month-old website can be laughably outdated. Our goal ought to be to improve upon both the weaknesses and the strengths of the web platform. We seek not only smoother transitions and larger canvases, but fine-grained addressability. Our URLs should point directly and unambiguously to specific content elements, be they pages, sections, paragraphs or words. Moreover, off-screen design patterns are essential to accommodating and empowering the multitude of devices we use to access the web. We should express the desire that interpage links take advantage of the CSS transitions which have been put to such good effect in every other aspect of our designs. Transitions aren’t just nice to have, they’re table stakes in the highly competitive world of native applications. The tools and technologies we have right now allow us to create smart, beautiful, useful webpages. With a little help, we can begin removing the seams and sutures that bind the web to an earlier, less sophisticated generation. 2012 Nathan Peretic nathanperetic 2012-12-21T00:00:00+00:00 https://24ways.org/2012/infinite-canvas-moving-beyond-the-page/ code
95 Giving Content Priority with CSS3 Grid Layout Browser support for many of the modules that are part of CSS3 have enabled us to use CSS for many of the things we used to have to use images for. The rise of mobile browsers and the concept of responsive web design has given us a whole new way of looking at design for the web. However, when it comes to layout, we haven’t moved very far at all. We have talked for years about separating our content and source order from the presentation of that content, yet most of us have had to make decisions on source order in order to get a certain visual layout. Owing to some interesting specifications making their way through the W3C process at the moment, though, there is hope of change on the horizon. In this article I’m going to look at one CSS module, the CSS3 grid layout module, that enables us to define a grid and place elements on to it. This article comprises a practical demonstration of the basics of grid layout, and also a discussion of one way in which we can start thinking of content in a more adaptive way. Before we get started, it is important to note that, at the time of writing, these examples work only in Internet Explorer 10. CSS3 grid layout is a module created by Microsoft, and implemented using the -ms prefix in IE10. My examples will all use the -ms prefix, and not include other prefixes simply because this is such an early stage specification, and by the time there are implementations in other browsers there may be inconsistencies. The implementation I describe today may well change, but is also there for your feedback. If you don’t have access to IE10, then one way to view and test these examples is by signing up for an account with Browserstack – the free trial would give you time to have a look. I have also included screenshots of all relevant stages in creating the examples. What is CSS3 grid layout? CSS3 grid layout aims to let developers divide up a design into a grid and place content on to that grid. Rather than trying to fabricate a grid from floats, you can declare an actual grid on a container element and then use that to position the elements inside. Most importantly, the source order of those elements does not matter. Declaring a grid We declare a grid using a new value for the display property: display: grid. As we are using the IE10 implementation here, we need to prefix that value: display: -ms-grid;. Once we have declared our grid, we set up the columns and rows using the grid-columns and grid-rows properties. .wrapper { display: -ms-grid; -ms-grid-columns: 200px 20px auto 20px 200px; -ms-grid-rows: auto 1fr; } In the above example, I have declared a grid on the .wrapper element. I have used the grid-columns property to create a grid with a 200 pixel-wide column, a 20 pixel gutter, a flexible width auto column that will stretch to fill the available space, another 20 pixel-wide gutter and a final 200 pixel sidebar: a flexible width layout with two fixed width sidebars. Using the grid-rows property I have created two rows: the first is set to auto so it will stretch to fill whatever I put into it; the second row is set to 1fr, a new value used in grids that means one fraction unit. In this case, one fraction unit of the available space, effectively whatever space is left. Positioning items on the grid Now I have a simple grid, I can pop items on to it. If I have a <div> with a class of .main that I want to place into the second row, and the flexible column set to auto I would use the following CSS: .content { -ms-grid-column: 3; -ms-grid-row: 2; -ms-grid-row-span: 1; } If you are old-school, you may already have realised that we are essentially creating an HTML table-like layout structure using CSS. I found the concept of a table the most helpful way to think about the grid layout module when trying to work out how to place elements. Creating grid systems As soon as I started to play with CSS3 grid layout, I wanted to see if I could use it to replicate a flexible grid system like this fluid 16-column 960 grid system. I started out by defining a grid on my wrapper element, using fractions to make this grid fluid. .wrapper { width: 90%; margin: 0 auto 0 auto; display: -ms-grid; -ms-grid-columns: 1fr (4.25fr 1fr)[16]; -ms-grid-rows: (auto 20px)[24]; } Like the 960 grid system I was using as an example, my grid starts with a gutter, followed by the first actual column, plus another gutter repeated sixteen times. What this means is that if I want to span two columns, as far as the grid layout module is concerned that is actually three columns: two wide columns, plus one gutter. So this needs to be accounted for when positioning items. I created a CSS class for each positioning option: column position; rows position; and column span. For example: .grid1 {-ms-grid-column: 2;} /* applying this class positions an item in the first column (the gutter is column 1) */ .grid2 {-ms-grid-column: 4;} /* 2nd column - gutter|column 1|gutter */ .grid3 {-ms-grid-column: 6;} /* 3rd column - gutter|column 1|gutter|column2|gutter */ .row1 {-ms-grid-row:1;} .row2 {-ms-grid-row:3;} .row3 {-ms-grid-row:5;} .colspan1 {-ms-grid-column-span:1;} .colspan2 {-ms-grid-column-span:3;} .colspan3 {-ms-grid-column-span:5;} I could then add multiple classes to each element to set the position on on the grid. This then gives me a replica of the fluid grid using CSS3 grid layout. To see this working fire up IE10 and view Example 1. This works, but… This worked, but isn’t ideal. I considered not showing this stage of my experiment – however, I think it clearly shows how the grid layout module works and is a useful starting point. That said, it’s not an approach I would take in production. First, we have to add classes to our markup that tie an element to a position on the grid. This might not be too much of a problem if we are always going to maintain the sixteen-column grid, though, as I will show you that the real power of the grid layout module appears once you start to redefine the grid, using different grids based on media queries. If you drop to a six-column layout for small screens, positioning items into column 16 makes no sense any more. Calculating grid position using LESS As we’ve seen, if you want to use a grid with main columns and gutters, you have to take into account the spacing between columns as well as the actual columns. This means we have to do some calculating every time we place an item on the grid. In my example above I got around this by creating a CSS class for each position, allowing me to think in sixteen rather than thirty-two columns. But by using a CSS preprocessor, I can avoid using all the classes yet still think in main columns. I’m using LESS for my example. My simple grid framework consists of one simple mixin. .position(@column,@row,@colspan,@rowspan) { -ms-grid-column: @column*2; -ms-grid-row: @row*2-1; -ms-grid-column-span: @colspan*2-1; -ms-grid-row-span: @rowspan*2-1; } My mixin takes four parameters: column; row; colspan; and rowspan. So if I wanted to place an item on column four, row three, spanning two columns and one row, I would write the following CSS: .box { .position(4,3,2,1); } The mixin would return: .box { -ms-grid-column: 8; -ms-grid-row: 5; -ms-grid-column-span: 3; -ms-grid-row-span: 1; } This saves me some typing and some maths. I could also add other prefixed values into my mixin as other browsers started to add support. We can see this in action creating a new grid. Instead of adding multiple classes to each element, I can add one class; that class uses the mixin to create the position. I have also played around with row spans using my mixin and you can see we end up with a quite complicated arrangement of boxes. Have a look at example two in IE10. I’ve used the JavaScript LESS parser so that you can view the actual LESS that I use. Note that I have needed to escape the -ms prefixed properties with ~"" to get LESS to accept them. This is looking better. I don’t have direct positioning information on each element in the markup, just a class name – I’ve used grid(x), but it could be something far more semantic. We can now take the example a step further and redefine the grid based on screen width. Media queries and the grid This example uses exactly the same markup as the previous example. However, we are now using media queries to detect screen width and redefine the grid using a different number of columns depending on that width. I start out with a six-column grid, defining that on .wrapper, then setting where the different items sit on this grid: .wrapper { width: 90%; margin: 0 auto 0 auto; display: ~"-ms-grid"; /* escaped for the LESS parser */ -ms-grid-columns: ~"1fr (4.25fr 1fr)[6]"; /* escaped for the LESS parser */ -ms-grid-rows: ~"(auto 20px)[40]"; /* escaped for the LESS parser */ } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... see example for all declarations ... */ Using media queries, I redefine the grid to nine columns when we hit a minimum width of 700 pixels. @media only screen and (min-width: 700px) { .wrapper { -ms-grid-columns: ~"1fr (4.25fr 1fr)[9]"; -ms-grid-rows: ~"(auto 20px)[50]"; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } Finally, we redefine the grid for 960 pixels, back to the sixteen-column grid we started out with. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~" 1fr (4.25fr 1fr)[16]"; -ms-grid-rows:~" (auto 20px)[24]"; } .grid1 { .position(1,1,1,1); } .grid2 { .position(2,1,1,1); } /* ... */ } If you view example three in Internet Explorer 10 you can see how the items reflow to fit the window size. You can also see, looking at the final set of blocks, that source order doesn’t matter. You can pick up a block from anywhere and place it in any position on the grid. Laying out a simple website So far, like a toddler on Christmas Day, we’ve been playing with boxes rather than thinking about what might be in them. So let’s take a quick look at a more realistic layout, in order to see why the CSS3 grid layout module can be really useful. At this time of year, I am very excited to get out of storage my collection of odd nativity sets, prompting my family to suggest I might want to open a museum. Should I ever do so, I’ll need a website, and here is an example layout. As I am using CSS3 grid layout, I can order my source in a logical manner. In this example my document is as follows, though these elements could be in any order I please: <div class="wrapper"> <div class="welcome"> ... </div> <article class="main"> ... </article> <div class="info"> ... </div> <div class="ads"> ... </div> </div> For wide viewports I can use grid layout to create a sidebar, with the important information about opening times on the top righ,t with the ads displayed below it. This creates the layout shown in the screenshot above. @media only screen and (min-width: 940px) { .wrapper { -ms-grid-columns:~" 1fr (4.25fr 1fr)[16]"; -ms-grid-rows:~" (auto 20px)[24]"; } .welcome { .position(1,1,12,1); padding: 0 5% 0 0; } .info { .position(13,1,4,1); border: 0; padding:0; } .main { .position(1,2,12,1); padding: 0 5% 0 0; } .ads { .position(13,2,4,1); display: block; margin-left: 0; } } In a floated layout, a sidebar like this often ends up being placed under the main content at smaller screen widths. For my situation this is less than ideal. I want the important information about opening times to end up above the main article, and to push the ads below it. With grid layout I can easily achieve this at the smallest width .info ends up in row two and .ads in row five with the article between. .wrapper { display: ~"-ms-grid"; -ms-grid-columns: ~"1fr (4.25fr 1fr)[4]"; -ms-grid-rows: ~"(auto 20px)[40]"; } .welcome { .position(1,1,4,1); } .info { .position(1,2,4,1); border: 4px solid #fff; padding: 10px; } .content { .position(1,3,4,5); } .main { .position(1,3,4,1); } .ads { .position(1,4,4,1); } Finally, as an extra tweak I add in a breakpoint at 600 pixels and nest a second grid on the ads area, arranging those three images into a row when they sit below the article at a screen width wider than the very narrow mobile width but still too narrow to support a sidebar. @media only screen and (min-width: 600px) { .ads { display: ~"-ms-grid"; -ms-grid-columns: ~"20px 1fr 20px 1fr 20px 1fr"; -ms-grid-rows: ~"1fr"; margin-left: -20px; } .ad:nth-child(1) { .position(1,1,1,1); } .ad:nth-child(2) { .position(2,1,1,1); } .ad:nth-child(3) { .position(3,1,1,1); } } View example four in Internet Explorer 10. This is a very simple example to show how we can use CSS grid layout without needing to add a lot of classes to our document. It also demonstrates how we can mainpulate the content depending on the context in which the user is viewing it. Layout, source order and the idea of content priority CSS3 grid layout isn’t the only module that starts to move us away from the issue of visual layout being linked to source order. However, with good support in Internet Explorer 10, it is a nice way to start looking at how this might work. If you look at the grid layout module as something to be used in conjunction with the flexible box layout module and the very interesting CSS regions and exclusions specifications, we have, tantalizingly on the horizon, a powerful set of tools for layout. I am particularly keen on the potential separation of source order from layout as it dovetails rather neatly into something I spend a lot of time thinking about. As a CMS developer, working on larger scale projects as well as our CMS product Perch, I am interested in how we better enable content editors to create content for the web. In particular, I search for better ways to help them create adaptive content; content that will work in a variety of contexts rather than being tied to one representation of that content. If the concept of adaptive content is new to you, then Karen McGrane’s presentation Adapting Ourselves to Adaptive Content is the place to start. Karen talks about needing to think of content as chunks, that might be used in many different places, displayed differently depending on context. I absolutely agree with Karen’s approach to content. We have always attempted to move content editors away from thinking about creating a page and previewing it on the desktop. However at some point content does need to be published as a page, or a collection of content if you prefer, and bits of that content have priority. Particularly in a small screen context, content gets linearized, we can only show so much at a time, and we need to make sure important content rises to the top. In the case of my example, I wanted to ensure that the address information was clearly visible without scrolling around too much. Dropping it with the entire sidebar to the bottom of the page would not have been so helpful, though neither would moving the whole sidebar to the top of the screen so a visitor had to scroll past advertising to get to the article. If our layout is linked to our source order, then enabling the content editor to make decisions about priority is really hard. Only a system that can do some regeneration of the source order on the server-side – perhaps by way of multiple templates – can allow those kinds of decisions to be made. For larger systems this might be a possibility; for smaller ones, or when using an off-the-shelf CMS, it is less likely to be. Fortunately, any system that allows some form of custom field type can be used to pop a class on to an element, and with CSS grid layout that is all that is needed to be able to target that element and drop it into the right place when the content is viewed, be that on a desktop or a mobile device. This approach can move us away from forcing editors to think visually. At the moment, I might have to explain to an editor that if a certain piece of content needs to come first when viewed on a mobile device, it needs to be placed in the sidebar area, tying it to a particular layout and design. I have to do this because we have to enforce fairly strict rules around source order to make the mechanics of the responsive design work. If I can instead advise an editor to flag important content as high priority in the CMS, then I can make decisions elsewhere as to how that is displayed, and we can maintain the visual hierarchy across all the different ways content might be rendered. Why frustrate ourselves with specifications we can’t yet use in production? The CSS3 grid layout specification is listed under the Exploring section of the list of current work of the CSS Working Group. While discussing a module at this stage might seem a bit pointless if we can’t use it in production work, there is a very real reason for doing so. If those of us who will ultimately be developing sites with these tools find out about them early enough, then we can start to give our feedback to the people responsible for the specification. There is information on the same page about how to get involved with the disussions. So, if you have a bit of time this holiday season, why not have a play with the CSS3 grid layout module? I have outlined here some of my thoughts on how grid layout and other modules that separate layout from source order can be used in the work that I do. Likewise, wherever in the stack you work, playing with and thinking about new specifications means you can think about how you would use them to enhance your work. Spot a problem? Think that a change to the specification would improve things for a specific use case? Then you have something you could post to www-style to add to the discussion around this module. All the examples are on CodePen so feel free to play around and fork them. 2012 Rachel Andrew rachelandrew 2012-12-18T00:00:00+00:00 https://24ways.org/2012/css3-grid-layout/ code
104 Sitewide Search On A Shoe String One of the questions I got a lot when I was building web sites for smaller businesses was if I could create a search engine for their site. Visitors should be able to search only this site and find things without the maintainer having to put “related articles” or “featured content” links on every page by hand. Back when this was all fields this wasn’t easy as you either had to write your own scraping tool, use ht://dig or a paid service from providers like Yahoo, Altavista or later on Google. In the former case you had to swallow the bitter pill of computing and indexing all your content and storing it in a database for quick access and in the latter it hurt your wallet. Times have moved on and nowadays you can have the same functionality for free using Yahoo’s “Build your own search service” – BOSS. The cool thing about BOSS is that it allows for a massive amount of hits a day and you can mash up the returned data in any format you want. Another good feature of it is that it comes with JSON-P as an output format which makes it possible to use it without any server-side component! Starting with a working HTML form In order to add a search to your site, you start with a simple HTML form which you can use without JavaScript. Most search engines will allow you to filter results by domain. In this case we will search “bbc.co.uk”. If you use Yahoo as your standard search, this could be: <form id="customsearch" action="http://search.yahoo.com/search"> <div> <label for="p">Search this site:</label> <input type="text" name="p" id="term"> <input type="hidden" name="vs" id="site" value="bbc.co.uk"> <input type="submit" value="go"> </div> </form> The Google equivalent is: <form id="customsearch" action="http://www.google.co.uk/search"> <div> <label for="p">Search this site:</label> <input type="text" name="as_q" id="term"> <input type="hidden" name="as_sitesearch" id="site" value="bbc.co.uk"> <input type="submit" value="go"> </div> </form> In any case make sure to use the ID term for the search term and site for the site, as this is what we are going to use for the script. To make things easier, also have an ID called customsearch on the form. To use BOSS, you should get your own developer API for BOSS and replace the one in the demo code. There is click tracking on the search results to see how successful your app is, so you should make it your own. Adding the BOSS magic BOSS is a REST API, meaning you can use it in any HTTP request or in a browser by simply adding the right parameters to a URL. Say for example you want to search “bbc.co.uk” for “christmas” all you need to do is open the following URL: http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&format=xml&appid=YOUR-APPLICATION-ID Try it out and click it to see the results in XML. We don’t want XML though, which is why we get rid of the format=xml parameter which gives us the same information in JSON: http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&appid=YOUR-APPLICATION-ID JSON makes most sense when you can send the output to a function and immediately use it. For this to happen all you need is to add a callback parameter and the JSON will be wrapped in a function call. Say for example we want to call SITESEARCH.found() when the data was retrieved we can do it this way: http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=YOUR-APPLICATION-ID You can use this immediately in a script node if you want to. The following code would display the total amount of search results for the term christmas on bbc.co.uk as an alert: <script type="text/javascript"> var SITESEARCH = {}; SITESEARCH.found = function(o){ alert(o.ysearchresponse.totalhits); } </script> <script type="text/javascript" src="http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-"> </script> However, for our example, we need to be a bit more clever with this. Enhancing the search form Here’s the script that enhances a search form to show results below it. SITESEARCH = function(){ var config = { IDs:{ searchForm:'customsearch', term:'term', site:'site' }, loading:'Loading results...', noresults:'No results found.', appID:'YOUR-APP-ID', results:20 }; var form; var out; function init(){ if(config.appID === 'YOUR-APP-ID'){ alert('Please get a real application ID!'); } else { form = document.getElementById(config.IDs.searchForm); if(form){ form.onsubmit = function(){ var site = document.getElementById(config.IDs.site).value; var term = document.getElementById(config.IDs.term).value; if(typeof site === 'string' && typeof term === 'string'){ if(typeof out !== 'undefined'){ out.parentNode.removeChild(out); } out = document.createElement('p'); out.appendChild(document.createTextNode(config.loading)); form.appendChild(out); var APIurl = 'http://boss.yahooapis.com/ysearch/web/v1/' + term + '?callback=SITESEARCH.found&sites=' + site + '&count=' + config.results + '&appid=' + config.appID; var s = document.createElement('script'); s.setAttribute('src',APIurl); s.setAttribute('type','text/javascript'); document.getElementsByTagName('head')[0].appendChild(s); return false; } }; } } }; function found(o){ var list = document.createElement('ul'); var results = o.ysearchresponse.resultset_web; if(results){ var item,link,description; for(var i=0,j=results.length;i<j;i++){ item = document.createElement('li'); link = document.createElement('a'); link.setAttribute('href',results[i].clickurl); link.innerHTML = results[i].title; item.appendChild(link); description = document.createElement('p'); description.innerHTML = results[i]['abstract']; item.appendChild(description); list.appendChild(item); } } else { list = document.createElement('p'); list.appendChild(document.createTextNode(config.noresults)); } form.replaceChild(list,out); out = list; }; return{ config:config, init:init, found:found }; }(); Oooohhhh scary code! Let’s go through this one bit at a time: We start by creating a module called SITESEARCH and give it an configuration object: SITESEARCH = function(){ var config = { IDs:{ searchForm:'customsearch', term:'term', site:'site' }, loading:'Loading results...', appID:'YOUR-APP-ID', results:20 } Configuration objects are a great idea to make your code easy to change and also to override. In this case you can define different IDs than the one agreed upon earlier, define a message to show when the results are loading, when there aren’t any results, the application ID and the number of results that should be displayed. Note: you need to replace “YOUR-APP-ID” with the real ID you retrieved from BOSS, otherwise the script will complain! var form; var out; function init(){ if(config.appID === 'YOUR-APP-ID'){ alert('Please get a real application ID!'); } else { We define form and out as variables to make sure that all the methods in the module have access to them. We then check if there was a real application ID defined. If there wasn’t, the script complains and that’s that. form = document.getElementById(config.IDs.searchForm); if(form){ form.onsubmit = function(){ var site = document.getElementById(config.IDs.site).value; var term = document.getElementById(config.IDs.term).value; if(typeof site === 'string' && typeof term === 'string'){ If the application ID was a winner, we check if the form with the provided ID exists and apply an onsubmit event handler. The first thing we get is the values of the site we want to search in and the term that was entered and check that those are strings. if(typeof out !== 'undefined'){ out.parentNode.removeChild(out); } out = document.createElement('p'); out.appendChild(document.createTextNode(config.loading)); form.appendChild(out); If both are strings we check of out is undefined. We will create a loading message and subsequently the list of search results later on and store them in this variable. So if out is defined, it’ll be an old version of a search (as users will re-submit the form over and over again) and we need to remove that old version. We then create a paragraph with the loading message and append it to the form. var APIurl = 'http://boss.yahooapis.com/ysearch/web/v1/' + term + '?callback=SITESEARCH.found&sites=' + site + '&count=' + config.results + '&appid=' + config.appID; var s = document.createElement('script'); s.setAttribute('src',APIurl); s.setAttribute('type','text/javascript'); document.getElementsByTagName('head')[0].appendChild(s); return false; } }; } } }; Now it is time to call the BOSS API by assembling a correct REST URL, create a script node and apply it to the head of the document. We return false to ensure the form does not get submitted as we want to stay on the page. Notice that we are using SITESEARCH.found as the callback method, which means that we need to define this one to deal with the data returned by the API. function found(o){ var list = document.createElement('ul'); var results = o.ysearchresponse.resultset_web; if(results){ var item,link,description; We create a new list and then get the resultset_web array from the data returned from the API. If there aren’t any results returned, this array will not exist which is why we need to check for it. Once we done that we can define three variables to repeatedly store the item title we want to display, the link to point to and the description of the link. for(var i=0,j=results.length;i<j;i++){ item = document.createElement('li'); link = document.createElement('a'); link.setAttribute('href',results[i].clickurl); link.innerHTML = results[i].title; item.appendChild(link); description = document.createElement('p'); description.innerHTML = results[i]['abstract']; item.appendChild(description); list.appendChild(item); } We then loop over the results array and assemble a list of results with the titles in links and paragraphs with the abstract of the site. Notice the bracket notation for abstract as abstract is a reserved word in JavaScript2 :). } else { list = document.createElement('p'); list.appendChild(document.createTextNode(config.noresults)); } form.replaceChild(list,out); out = list; }; If there aren’t any results, we define a paragraph with the no results message as list. In any case we replace the old out (the loading message) with the list and re-define out as the list. return{ config:config, init:init, found:found }; }(); All that is left to do is return the properties and methods we want to make public. In this case found needs to be public as it is accessed by the API return. We return init to make it accessible and config to allow implementers to override any of the properties. Using the script In order to use this script, all you need to do is to add it after the form in the document, override the API key with your own and call init(): <form id="customsearch" action="http://search.yahoo.com/search"> <div> <label for="p">Search this site:</label> <input type="text" name="p" id="term"> <input type="hidden" name="vs" id="site" value="bbc.co.uk"> <input type="submit" value="go"> </div> </form> <script type="text/javascript" src="boss-site-search.js"></script> <script type="text/javascript"> SITESEARCH.config.appID = 'copy-the-id-you-know-to-get-where'; SITESEARCH.init(); </script> Where to go from here This is just a very simple example of what you can do with BOSS. You can define languages and regions, retrieve and display images and news and mix the results with other data sources before displaying them. One very cool feature is that by adding a view=keyterms parameter to the URL you can get the keywords of each of the results to drill deeper into the search. An example for this written in PHP is available on the YDN blog. For JavaScript solutions there is a handy wrapper called yboss available to help you go nuts. 2008 Christian Heilmann chrisheilmann 2008-12-04T00:00:00+00:00 https://24ways.org/2008/sitewide-search-on-a-shoestring/ code
109 Geotag Everywhere with Fire Eagle A note from the editors: Since this article was written Yahoo! has retired the Fire Eagle service. Location, they say, is everywhere. Everyone has one, all of the time. But on the web, it’s taken until this year to see the emergence of location in the applications we use and build. The possibilities are broad. Increasingly, mobile phones provide SDKs to approximate your location wherever you are, browser extensions such as Loki and Mozilla’s Geode provide browser-level APIs to establish your location from the proximity of wireless networks to your laptop. Yahoo’s Brickhouse group launched Fire Eagle, an ambitious location broker enabling people to take their location from any of these devices or sources, and provide it to a plethora of web services. It enables you to take the location information that only your iPhone knows about and use it anywhere on the web. That said, this is still a time of location as an emerging technology. Fire Eagle stores your location on the web (protected by application-specific access controls), but to try and give an idea of how useful and powerful your location can be — regardless of the services you use now — today’s 24ways is going to build a bookmarklet to call up your location on demand, in any web application. Location Support on the Web Over the past year, the number of applications implementing location features has increased dramatically. Plazes and Brightkite are both full featured social networks based around where you are, whilst Pownce rolled in Fire Eagle support to allow geotagging of all the content you post to their microblogging service. Dipity’s beautiful timeline shows for you moving from place to place and Six Apart’s activity stream for Movable Type started exposing your movements. The number of services that hook into Fire Eagle will increase as location awareness spreads through the developer community, but you can use your location on other sites indirectly too. Consider Flickr. Now world renowned for their incredible mapping and places features, geotagging on Flickr started out as a grassroots extension of regular tagging. That same technique can be used to start rolling geotagging in any publishing platform you come across, for any kind of content. Machine-tags (geo:lat= and geo:lon=) and the adr and geo microformats can be used to enhance anything you write with location information. A crash course in avian inflammability Fire Eagle is a location store. A broker between services and devices which provide location and those which consume it. It’s a switchboard that controls which pieces of your location different applications can see and use, and keeps hidden anything you want kept private. A blog widget that displays your current location in public can be restricted to display just your current city, whilst a service that provides you with a list of the nearest ATMs will operate better with a precise street address. Even if your iPhone tells Fire Eagle exactly where you are, consuming applications only see what you want them to see. That’s important for users to realise that they’re in control, but also important for application developers to remember that you cannot rely on having super-accurate information available all the time. You need to build location aware applications which degrade gracefully, because users will provide fuzzier information — either through choice, or through less accurate sources. Application specific permissions are controlled through an OAuth API. Each application has a unique key, used to request a second, user-specific key that permits access to that user’s information. You store that user key and it remains valid until such a time as the user revokes your application’s access. Unlike with passwords, these keys are unique per application, so revoking the access rights of one application doesn’t break all the others. Building your first Fire Eagle app; Geomarklet Fire Eagle’s developer documentation can take you through examples of writing simple applications using server side technologies (PHP, Python). Here, we’re going to write a client-side bookmarklet to make your location available in every site you use. It’s designed to fast-track the experience of having location available everywhere on web, and show you how that can be really handy. Hopefully, this will set you thinking about how location can enhance the new applications you build in 2009. An oddity of bookmarklets Bookmarklets (or ‘favlets’, for those of an MSIE persuasion) are a strange environment to program in. Critically, you have no persistent storage available. As such, using token-auth APIs in a static environment requires you to build you application in a slightly strange way; authing yourself in advance and then hardcoding the keys into your script. Get started Before you do anything else, go to http://fireeagle.com and log in, get set up if you need to and by all means take a look around. Take a look at the mobile updaters section of the application gallery and perhaps pick out an app that will update Fire Eagle from your phone or laptop. Once that’s done, you need to register for an application key in the developer section. Head straight to /developer/create and complete the form. Since you’re building a standalone application, choose ‘Auth for desktop applications’ (rather than web applications), and select that you’ll be ‘accessing location’, not updating. At the end of this process, you’ll have two application keys, a ‘Consumer Key’ and a ‘Consumer Secret’, which look like these: Consumer Key luKrM9U1pMnu Consumer Secret ZZl9YXXoJX5KLiKyVrMZffNEaBnxnd6M These keys combined allow your application to make requests to Fire Eagle. Next up, you need to auth yourself; granting your new application permission to use your location. Because bookmarklets don’t have local storage, you can’t integrate the auth process into the bookmarklet itself — it would have no way of storing the returned key. Instead, I’ve put together a simple web frontend through which you can auth with your application. Head to Auth me, Amadeus!, enter the application keys you just generated and hit ‘Authorize with Fire Eagle’. You’ll be taken to the Fire Eagle website, just as in regular Fire Eagle applications, and after granting access to your app, be redirected back to Amadeus which will provide you your user tokens. These tokens are used in subsequent requests to read your location. And, skip to the end… The process of building the bookmarklet, making requests to Fire Eagle, rendering it to the page and so forth follows, but if you’re the impatient type, you might like to try this out right now. Take your four API keys from above, and drag the following link to your Bookmarks Toolbar; it contains all the code described below. Before you can use it, you need to edit in your own API keys. Open your browser’s bookmark editor and where you find text like ‘YOUR_CONSUMER_KEY_HERE’, swap in the corresponding key you just generated. Get Location Bookmarklet Basics To start on the bookmarklet code, set out a basic JavaScript module-pattern structure: var Geomarklet = function() { return ({ callback: function(json) {}, run: function() {} }); }; Geomarklet.run(); Next we’ll add the keys obtained in the setup step, and also some basic Fire Eagle support objects: var Geomarklet = function() { var Keys = { consumer_key: 'IuKrJUHU1pMnu', consumer_secret: 'ZZl9YXXoJX5KLiKyVEERTfNEaBnxnd6M', user_token: 'xxxxxxxxxxxx', user_secret: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' }; var LocationDetail = { EXACT: 0, POSTAL: 1, NEIGHBORHOOD: 2, CITY: 3, REGION: 4, STATE: 5, COUNTRY: 6 }; var index_offset; return ({ callback: function(json) {}, run: function() {} }); }; Geomarklet.run(); The Location Hierarchy A successful Fire Eagle query returns an object called the ‘location hierarchy’. Depending on the level of detail shared, the index of a particular piece of information in the array will vary. The LocationDetail object maps the array indices of each level in the hierarchy to something comprehensible, whilst the index_offset variable is an adjustment based on the detail of the result returned. The location hierarchy object looks like this, providing a granular breakdown of a location, in human consumable and machine-friendly forms. "user": { "location_hierarchy": [{ "level": 0, "level_name": "exact", "name": "707 19th St, San Francisco, CA", "normal_name": "94123", "geometry": { "type": "Point", "coordinates": [ - 0.2347530752, 67.232323] }, "label": null, "best_guess": true, "id": , "located_at": "2008-12-18T00:49:58-08:00", "query": "q=707%2019th%20Street,%20Sf" }, { "level": 1, "level_name": "postal", "name": "San Francisco, CA 94114", "normal_name": "12345", "woeid": , "place_id": "", "geometry": { "type": "Polygon", "coordinates": [], "bbox": [] }, "label": null, "best_guess": false, "id": 59358791, "located_at": "2008-12-18T00:49:58-08:00" }, { "level": 2, "level_name": "neighborhood", "name": "The Mission, San Francisco, CA", "normal_name": "The Mission", "woeid": 23512048, "place_id": "Y12JWsKbApmnSQpbQg", "geometry": { "type": "Polygon", "coordinates": [], "bbox": [] }, "label": null, "best_guess": false, "id": 59358801, "located_at": "2008-12-18T00:49:58-08:00" }, } In this case the first object has a level of 0, so the index_offset is also 0. Prerequisites To query Fire Eagle we call in some existing libraries to handle the OAuth layer and the Fire Eagle API call. Your bookmarklet will need to add the following scripts into the page: The SHA1 encryption algorithm The OAuth wrapper An extension for the OAuth wrapper The Fire Eagle wrapper itself When the bookmarklet is first run, we’ll insert these scripts into the document. We’re also inserting a stylesheet to dress up the UI that will be generated. If you want to follow along any of the more mundane parts of the bookmarklet, you can download the full source code. Rendering This bookmarklet can be extended to support any formatting of your location you like, but for sake of example I’m going to build three common formatters that you’ll find useful for common location scenarios: Sites which already ask for your location; and in publishing systems that accept tags or HTML mark-up. All the rendering functions are items in a renderers object, so they can be iterated through easily, making it trivial to add new formatting functions as your find new use cases (just add another function to the object). var renderers = { geotag: function(user) { if(LocationDetail.EXACT !== index_offset) { return false; } else { var coords = user.location_hierarchy[LocationDetail.EXACT].geometry.coordinates; return "geo:lat=" + coords[0] + ", geo:lon=" + coords[1]; } }, city: function(user) { if(LocationDetail.CITY < index_offset) { return false; } else { return user.location_hierarchy[LocationDetail.CITY - index_offset].name; } } You should always fail gracefully, and in line with catering to users who choose not to share their location precisely, always check that the location has been returned at the level you require. Geotags are expected to be precise, so if an exact location is unavailable, returning false will tell the rendering aspect of the bookmarklet to ignore the function altogether. These first two are quite simple, geotag returns geo:lat=-0.2347530752, geo:lon=67.232323 and city returns San Francisco, CA. This final renderer creates a chunk of HTML using the adr and geo microformats, using all available aspects of the location hierarchy, and can be used to geotag any content you write on your blog or in comments: html: function(user) { var geostring = ''; var adrstring = ''; var adr = []; adr.push('<p class="adr">'); // city if(LocationDetail.CITY >= index_offset) { adr.push( '\n <span class="locality">' + user.location_hierarchy[LocationDetail.CITY-index_offset].normal_name + '</span>,' ); } // county if(LocationDetail.REGION >= index_offset) { adr.push( '\n <span class="region">' + user.location_hierarchy[LocationDetail.REGION-index_offset].normal_name + '</span>,' ); } // locality if(LocationDetail.STATE >= index_offset) { adr.push( '\n <span class="region">' + user.location_hierarchy[LocationDetail.STATE-index_offset].normal_name + '</span>,' ); } // country if(LocationDetail.COUNTRY >= index_offset) { adr.push( '\n <span class="country-name">' + user.location_hierarchy[LocationDetail.COUNTRY-index_offset].normal_name + '</span>' ); } // postal if(LocationDetail.POSTAL >= index_offset) { adr.push( '\n <span class="postal-code">' + user.location_hierarchy[LocationDetail.POSTAL-index_offset].normal_name + '</span>,' ); } adr.push('\n</p>\n'); adrstring = adr.join(''); if(LocationDetail.EXACT === index_offset) { var coords = user.location_hierarchy[LocationDetail.EXACT].geometry.coordinates; geostring = '<p class="geo">' +'\n <span class="latitude">' + coords[0] + '</span>;' + '\n <span class="longitude">' + coords[1] + '</span>\n</p>\n'; } return (adrstring + geostring); } Here we check the availability of every level of location and build it into the adr and geo patterns as appropriate. Just as for the geotag function, if there’s no exact location the geo markup won’t be returned. Finally, there’s a rendering method which creates a container for all this data, renders all the applicable location formats and then displays them in the page for a user to copy and paste. You can throw this together with DOM methods and some simple styling, or roll in some components from YUI or JQuery to handle drawing full featured overlays. You can see this simple implementation for rendering in the full source code. Make the call With a framework in place to render Fire Eagle’s location hierarchy, the only thing that remains is to actually request your location. Having already authed through Amadeus earlier, that’s as simple as instantiating the Fire Eagle JavaScript wrapper and making a single function call. It’s a big deal that whilst a lot of new technologies like OAuth add some complexity and require new knowledge to work with, APIs like Fire Eagle are really very simple indeed. return { run: function() { insert_prerequisites(); setTimeout( function() { var fe = new FireEagle( Keys.consumer_key, Keys.consumer_secret, Keys.user_token, Keys.user_secret ); var script = document.createElement('script'); script.type = 'text/javascript'; script.src = fe.getUserUrl( FireEagle.RESPONSE_FORMAT.json, 'Geomarklet.callback' ); document.body.appendChild(script); }, 2000 ); }, callback: function(json) { if(json.rsp && 'fail' == json.rsp.stat) { alert('Error ' + json.rsp.code + ": " + json.rsp.message); } else { index_offset = json.user.location_hierarchy[0].level; draw_selector(json); } } }; We first insert the prerequisite scripts required for the Fire Eagle request to function, and to prevent trying to instantiate the FireEagle object before it’s been loaded over the wire, the remaining instantiation and request is wrapped inside a setTimeout delay. We then create the request URL, referencing the Geomarklet.callback callback function and then append the script to the document body — allowing a cross-domain request. The callback itself is quite simple. Check for the presence and value of rsp.status to test for errors, and display them as required. If the request is successful set the index_offset — to adjust for the granularity of the location hierarchy — and then pass the object to the renderer. The result? When Geomarklet.run() is called, your location from Fire Eagle is read, and each renderer displayed on the page in an easily copy and pasteable form, ready to be used however you need. Deploy The final step is to convert this code into a long string for use as a bookmarklet. Easiest for Mac users is the JavaScript bundle in TextMate — choose Bundles: JavaScript: Copy as Bookmarklet to Clipboard. Then create a new ‘Get Location’ bookmark in your browser of choice and paste in. Those without TextMate can shrink their code down into a single line by first running their code through the JSLint tool (to ensure the code is free from errors and has all the required semi-colons) and then use a find-and-replace tool to remove line breaks from your code (or even run your code through JSMin to shrink it down). With the bookmarklet created and added to your bookmarks bar, you can now call up your location on any page at all. Get a feel for a web where your location is just another reliable part of the browsing experience. Where next? So, the Geomarklet you’ve been guided through is a pretty simple premise and pretty simple output. But from this base you can start to extend: Add code that will insert each of the location renderings directly into form fields, perhaps, or how about site-specific handlers to add your location tags into the correct form field in Wordpress or Tumblr? Paste in your current location to Google Maps? Or Flickr? Geomarklet gives you a base to start experimenting with location on your own pages and the sites you browse daily. The introduction of consumer accessible geo to the web is an adventure of discovery; not so much discovering new locations, but discovering location itself. 2008 Ben Ward benward 2008-12-21T00:00:00+00:00 https://24ways.org/2008/geotag-everywhere-with-fire-eagle/ code
121 Hide And Seek in The Head If you want your JavaScript-enhanced pages to remain accessible and understandable to scripted and noscript users alike, you have to think before you code. Which functionalities are required (ie. should work without JavaScript)? Which ones are merely nice-to-have (ie. can be scripted)? You should only start creating the site when you’ve taken these decisions. Special HTML elements Once you have a clear idea of what will work with and without JavaScript, you’ll likely find that you need a few HTML elements for the noscript version only. Take this example: A form has a nifty bit of Ajax that automatically and silently sends a request once the user enters something in a form field. However, in order to preserve accessibility, the user should also be able to submit the form normally. So the form should have a submit button in noscript browsers, but not when the browser supports sufficient JavaScript. Since the button is meant for noscript browsers, it must be hard-coded in the HTML: <input type="submit" value="Submit form" id="noScriptButton" /> When JavaScript is supported, it should be removed: var checkJS = [check JavaScript support]; window.onload = function () { if (!checkJS) return; document.getElementById('noScriptButton').style.display = 'none'; } Problem: the load event Although this will likely work fine in your testing environment, it’s not completely correct. What if a user with a modern, JavaScript-capable browser visits your page, but has to wait for a huge graphic to load? The load event fires only after all assets, including images, have been loaded. So this user will first see a submit button, but then all of a sudden it’s removed. That’s potentially confusing. Fortunately there’s a simple solution: play a bit of hide and seek in the <head>: var checkJS = [check JavaScript support]; if (checkJS) { document.write('<style>#noScriptButton{display: none}</style>'); } First, check if the browser supports enough JavaScript. If it does, document.write an extra <style> element that hides the button. The difference with the previous technique is that the document.write command is outside any function, and is therefore executed while the JavaScript is being parsed. Thus, the #noScriptButton{display: none} rule is written into the document before the actual HTML is received. That’s exactly what we want. If the rule is already present at the moment the HTML for the submit button is received and parsed, the button is hidden immediately. Even if the user (and the load event) have to wait for a huge image, the button is already hidden, and both scripted and noscript users see the interface they need, without any potentially confusing flashes of useless content. In general, if you want to hide content that’s not relevant to scripted users, give the hide command in CSS, and make sure it’s given before the HTML element is loaded and parsed. Alternative Some people won’t like to use document.write. They could also add an empty <link /> element to the <head> and give it an href attribute once the browser’s JavaScript capabilities have been evaluated. The <link /> element is made to refer to a style sheet that contains the crucial #noScriptButton{display: none}, and everything works fine. Important note: The script needs access to the <link />, and the only way to ensure that access is to include the empty <link /> element before your <script> tag. 2006 Peter-Paul Koch ppk 2006-12-06T00:00:00+00:00 https://24ways.org/2006/hide-and-seek-in-the-head/ code
126 Intricate Fluid Layouts in Three Easy Steps The Year of the Script may have drawn attention away from CSS but building fluid, multi-column, cross-browser CSS layouts can still be as unpleasant as a lump of coal. Read on for a worry-free approach in three quick steps. The layout system I developed, YUI Grids CSS, has three components. They can be used together as we’ll see, or independently. The Three Easy Steps Choose fluid or fixed layout, and choose the width (in percents or pixels) of the page. Choose the size, orientation, and source-order of the main and secondary blocks of content. Choose the number of columns and how they distribute (for example 50%-50% or 25%-75%), using stackable and nestable grid structures. The Setup There are two prerequisites: We need to normalize the size of an em and opt into the browser rendering engine’s Strict Mode. Ems are a superior unit of measure for our case because they represent the current font size and grow as the user increases their font size setting. This flexibility—the container growing with the user’s wishes—means larger text doesn’t get crammed into an unresponsive container. We’ll use YUI Fonts CSS to set the base size because it provides consistent-yet-adaptive font-sizes while preserving user control. The second prerequisite is to opt into Strict Mode (more info on rendering modes) by declaring a Doctype complete with URI. You can choose XHTML or HTML, and Transitional or Strict. I prefer HTML 4.01 Strict, which looks like this: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> Including the CSS A single small CSS file powers a nearly-infinite number of layouts thanks to a recursive system and the interplay between the three distinct components. You could prune to a particular layout’s specific needs, but why bother when the complete file weighs scarcely 1.8kb uncompressed? Compressed, YUI Fonts and YUI Grids combine for a miniscule 0.9kb over the wire. You could save an HTTP request by concatenating the two CSS files, or by adding their contents to your own CSS, but I’ll keep them separate for now: <link href="fonts.css" rel="stylesheet" type="text/css"> <link href="grids.css" rel="stylesheet" type="text/css"> Example: The Setup Now we’re ready to build some layouts. Step 1: Choose Fluid or Fixed Layout Choose between preset widths of 750px, 950px, and 100% by giving a document-wrapping div an ID of doc, doc2, or doc3. These options cover most use cases, but it’s easy to define a custom fixed width. The fluid 100% grid (doc3) is what I’ve been using almost exclusively since it was introduced in the last YUI released. <body> <div id="doc3"></div> </body> All pages are centered within the viewport, and grow with font size. The 100% width page (doc3) preserves 10px of breathing room via left and right margins. If you prefer your content flush to the viewport, just add doc3 {margin:auto} to your CSS. Regardless of what you choose in the other two steps, you can always toggle between these widths and behaviors by simply swapping the ID value. It’s really that simple. Example: 100% fluid layout Step 2: Choose a Template Preset This is perhaps the most frequently omitted step (they’re all optional), but I use it nearly every time. In a source-order-independent way (good for accessibility and SEO), “Template Presets” provide commonly used template widths compatible with ad-unit dimension standards defined by the Interactive Advertising Bureau, an industry association. Choose between the six Template Presets (.yui-t1 through .yui-t6) by setting the class value on the document-wrapping div established in Step 1. Most frequently I use yui-t3, which puts the narrow secondary block on the left and makes it 300px wide. <body> <div id="doc3" class="yui-t3"></div> </body> The Template Presets control two “blocks” of content, which are defined by two divs, each with yui-b (“b” for “block”) class values. Template Presets describe the width and orientation of the secondary block; the main block will take up the rest of the space. <body> <div id="doc3" class="yui-t3"> <div class="yui-b"></div> <div class="yui-b"></div> </div> </body> Use a wrapping div with an ID of yui-main to structurally indicate which block is the main block. This wrapper—not the source order—identifies the main block. <body> <div id="doc3" class="yui-t3"> <div id="yui-main"> <div class="yui-b"></div> </div> <div class="yui-b"></div> </div> </body> Example: Main and secondary blocks sized and oriented with .yui-t3 Template Preset Again, regardless of what values you choose in the other steps, you can always toggle between these Template Presets by toggling the class value of your document-wrapping div. It’s really that simple. Step 3: Nest and Stack Grid Structures. The bulk of the power of the system is in this third step. The key is that columns are built by parents telling children how to behave. By default, two children each consume half of their parent’s area. Put two units inside a grid structure, and they will sit side-by-side, and they will each take up half the space. Nest this structure and two columns become four. Stack them for rows of columns. An Even Number of Columns The default behavior creates two evenly-distributed columns. It’s easy. Define one parent grid with .yui-g (“g” for grid) and two child units with .yui-u (“u” for unit). The code looks like this: <div class="yui-g"> <div class="yui-u first"></div> <div class="yui-u"></div> </div> Be sure to indicate the “first“ unit because the :first-child pseudo-class selector isn’t supported across all A-grade browsers. It’s unfortunate we need to add this, but luckily it’s not out of place in the markup layer since it is structural information. Example: Two evenly-distributed columns in the main content block An Odd Number of Columns The default system does not work for an odd number of columns without using the included “Special Grids” classes. To create three evenly distributed columns, use the “yui-gb“ Special Grid: <div class="yui-gb"> <div class="yui-u first"></div> <div class="yui-u"></div> <div class="yui-u"></div> </div> Example: Three evenly distributed columns in the main content block Uneven Column Distribution Special Grids are also used for unevenly distributed column widths. For example, .yui-ge tells the first unit (column) to take up 75% of the parent’s space and the other unit to take just 25%. <div class="yui-ge"> <div class="yui-u first"></div> <div class="yui-u"></div> </div> Example: Two columns in the main content block split 75%-25% Putting It All Together Start with a full-width fluid page (div#doc3). Make the secondary block 180px wide on the right (div.yui-t4). Create three rows of columns: Three evenly distributed columns in the first row (div.yui-gb), two uneven columns (66%-33%) in the second row (div.yui-gc), and two evenly distributed columns in the thrid row. <body> <!-- choose fluid page and Template Preset --> <div id="doc3" class="yui-t4"> <!-- main content block --> <div id="yui-main"> <div class="yui-b"> <!-- stacked grid structure, Special Grid "b" --> <div class="yui-gb"> <div class="yui-u first"></div> <div class="yui-u"></div> <div class="yui-u"></div> </div> <!-- stacked grid structure, Special Grid "c" --> <div class="yui-gc"> <div class="yui-u first"></div> <div class="yui-u"></div> </div> <!-- stacked grid structure --> <div class="yui-g"> <div class="yui-u first"></div> <div class="yui-u"></div> </div> </div> </div> <!-- secondary content block --> <div class="yui-b"></div> </div> </body> Example: A complex layout. Wasn’t that easy? Now that you know the three “levers” of YUI Grids CSS, you’ll be creating headache-free fluid layouts faster than you can say “Peace on Earth”. 2006 Nate Koechley natekoechley 2006-12-20T00:00:00+00:00 https://24ways.org/2006/intricate-fluid-layouts/ code
132 Tasty Text Trimmer In most cases, when designing a user interface it’s best to make a decision about how data is best displayed and stick with it. Failing to make a decision ultimately leads to too many user options, which in turn can be taxing on the poor old user. Under some circumstances, however, it’s good to give the user freedom in customising their workspace. One good example of this is the ‘Article Length’ tool in Apple’s Safari RSS reader. Sliding a slider left of right dynamically changes the length of each article shown. It’s that kind of awesomey magic stuff that’s enough to keep you from sleeping. Let’s build one. The Setup Let’s take a page that has lots of long text items, a bit like a news page or like Safari’s RSS items view. If we were to attach a class name to each element we wanted to resize, that would give us something to hook onto from the JavaScript. Example 1: The basic page. As you can see, I’ve wrapped my items in a DIV and added a class name of chunk to them. It’s these chunks that we’ll be finding with the JavaScript. Speaking of which … Our Core Functions There are two main tasks that need performing in our script. The first is to find the chunks we’re going to be resizing and store their original contents away somewhere safe. We’ll need this so that if we trim the text down we’ll know what it was if the user decides they want it back again. We’ll call this loadChunks. var loadChunks = function(){ var everything = document.getElementsByTagName('*'); var i, l; chunks = []; for (i=0, l=everything.length; i<l; i++){ if (everything[i].className.indexOf(chunkClass) > -1){ chunks.push({ ref: everything[i], original: everything[i].innerHTML }); } } }; The variable chunks is stored outside of this function so that we can access it from our next core function, which is doTrim. var doTrim = function(interval) { if (!chunks) loadChunks(); var i, l; for (i=0, l=chunks.length; i<l; i++){ var a = chunks[i].original.split(' '); a = a.slice(0, interval); chunks[i].ref.innerHTML = a.join(' '); } }; The first thing that needs to be done is to call loadChunks if the chunks variable isn’t set. This should only happen the first time doTrim is called, as from that point the chunks will be loaded. Then all we do is loop through the chunks and trim them. The trimming itself (lines 6-8) is very simple. We split the text into an array of words (line 6), then select only a portion from the beginning of the array up until the number we want (line 7). Finally the words are glued back together (line 8). In essense, that’s it, but it leaves us needing to know how to get the number into this function in the first place, and how that number is generated by the user. Let’s look at the latter case first. The YUI Slider Widget There are lots of JavaScript libraries available at the moment. A fair few of those are really good. I use the Yahoo! User Interface Library professionally, but have only recently played with their pre-build slider widget. Turns out, it’s pretty good and perfect for this task. Once you have the library files linked in (check the docs linked above) it’s fairly straightforward to create yourself a slider. slider = YAHOO.widget.Slider.getHorizSlider("sliderbg", "sliderthumb", 0, 100, 5); slider.setValue(50); slider.subscribe("change", doTrim); All that’s needed then is some CSS to make the slider look like a slider, and of course a few bits of HTML. We’ll see those later. See It Working! Rather than spell out all the nuts and bolts of implementing this fairly simple script, let’s just look at in it action and then pick on some interesting bits I’ve added. Example 2: Try the Tasty Text Trimmer. At the top of the JavaScript file I’ve added a small number of settings. var chunkClass = 'chunk'; var minValue = 10; var maxValue = 100; var multiplier = 5; Obvious candidates for configuration are the class name used to find the chunks, and also the some minimum and maximum values. The minValue is the fewest number of words we wish to display when the slider is all the way down. The maxValue is the length of the slider, in this case 100. Moving the slider makes a call to our doTrim function with the current value of the slider. For a slider 100 pixels long, this is going to be in the range of 0-100. That might be okay for some things, but for longer items of text you’ll want to allow for displaying more than 100 words. I’ve accounted for this by adding in a multiplier – in my code I’m multiplying the value by 5, so a slider value of 50 shows 250 words. You’ll probably want to tailor the multiplier to the type of content you’re using. Keeping it Accessible This effect isn’t something we can really achieve without JavaScript, but even so we must make sure that this functionality has no adverse impact on the page when JavaScript isn’t available. This is achieved by adding the slider markup to the page from within the insertSliderHTML function. var insertSliderHTML = function(){ var s = '<a id="slider-less" href="#less"><img src="icon_min.gif" width="10" height="10" alt="Less text" class="first" /></a>'; s +=' <div id="sliderbg"><div id="sliderthumb"><img src="sliderthumbimg.gif" /></div></div>'; s +=' <a id="slider-more" href="#more"><img src="icon_max.gif" width="10" height="10" alt="More text" /></a>'; document.getElementById('slider').innerHTML = s; } The other important factor to consider is that a slider can be tricky to use unless you have good eyesight and pretty well controlled motor skills. Therefore we should provide a method of changing the value by the keyboard. I’ve done this by making the icons at either end of the slider links so they can be tabbed to. Clicking on either icon fires the appropriate JavaScript function to show more or less of the text. In Conclusion The upshot of all this is that without JavaScript the page just shows all the text as it normally would. With JavaScript we have a slider for trimming the text excepts that can be controlled with the mouse or with a keyboard. If you’re like me and have just scrolled to the bottom to find the working demo, here it is again: Try the Tasty Text Trimmer Trimmer for Christmas? Don’t say I never give you anything! 2006 Drew McLellan drewmclellan 2006-12-01T00:00:00+00:00 https://24ways.org/2006/tasty-text-trimmer/ code
136 Making XML Beautiful Again: Introducing Client-Side XSL Remember that first time you saw XML and got it? When you really understood what was possible and the deep meaning each element could carry? Now when you see XML, it looks ugly, especially when you navigate to a page of XML in a browser. Well, with every modern browser now supporting XSL 1.0, I’m going to show you how you can turn something as simple as an ATOM feed into a customised page using a browser, Notepad and some XSL. What on earth is this XSL? XSL is a family of recommendations for defining XML document transformation and presentation. It consists of three parts: XSLT 1.0 – Extensible Stylesheet Language Transformation, a language for transforming XML XPath 1.0 – XML Path Language, an expression language used by XSLT to access or refer to parts of an XML document. (XPath is also used by the XML Linking specification) XSL-FO 1.0 – Extensible Stylesheet Language Formatting Objects, an XML vocabulary for specifying formatting semantics XSL transformations are usually a one-to-one transformation, but with newer versions (XSL 1.1 and XSL 2.0) its possible to create many-to-many transformations too. So now you have an overview of XSL, on with the show… So what do I need? So to get going you need a browser an supports client-side XSL transformations such as Firefox, Safari, Opera or Internet Explorer. Second, you need a source XML file – for this we’re going to use an ATOM feed from Flickr.com. And lastly, you need an editor of some kind. I find Notepad++ quick for short XSLs, while I tend to use XMLSpy or Oxygen for complex XSL work. Because we’re doing a client-side transformation, we need to modify the XML file to tell it where to find our yet-to-be-written XSL file. Take a look at the source XML file, which originates from my Flickr photos tagged sky, in ATOM format. The top of the ATOM file now has an additional <?xml-stylesheet /> instruction, as can been seen on Line 2 below. This instructs the browser to use the XSL file to transform the document. <?xml version="1.0" encoding="utf-8" standalone="yes"?> <?xml-stylesheet type="text/xsl" href="flickr_transform.xsl"?> <feed xmlns="http://www.w3.org/2005/Atom" xmlns:dc="http://purl.org/dc/elements/1.1/"> Your first transformation Your first XSL will look something like this: <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:dc="http://purl.org/dc/elements/1.1/"> <xsl:output method="html" encoding="utf-8"/> </xsl:stylesheet> This is pretty much the starting point for most XSL files. You will notice the standard XML processing instruction at the top of the file (line 1). We then switch into XSL mode using the XSL namespace on all XSL elements (line 2). In this case, we have added namespaces for ATOM (line 4) and Dublin Core (line 5). This means the XSL can now read and understand those elements from the source XML. After we define all the namespaces, we then move onto the xsl:output element (line 6). This enables you to define the final method of output. Here we’re specifying html, but you could equally use XML or Text, for example. The encoding attributes on each element do what they say on the tin. As with all XML, of course, we close every element including the root. The next stage is to add a template, in this case an <xsl:template /> as can be seen below: <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:dc="http://purl.org/dc/elements/1.1/"> <xsl:output method="html" encoding="utf-8"/> <xsl:template match="/"> <html> <head> <title>Making XML beautiful again : Transforming ATOM</title> </head> <body> <xsl:apply-templates select="/atom:feed"/> </body> </html> </xsl:template> </xsl:stylesheet> The beautiful thing about XSL is its English syntax, if you say it out loud it tends to make sense. The / value for the match attribute on line 8 is our first example of XPath syntax. The expression / matches any element – so this <xsl:template/> will match against any element in the document. As the first element in any XML document is the root element, this will be the one matched and processed first. Once we get past our standard start of a HTML document, the only instruction remaining in this <xsl:template/> is to look for and match all <atom:feed/> elements using the <xsl:apply-templates/> in line 14, above. <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:dc="http://purl.org/dc/elements/1.1/"> <xsl:output method="html" encoding="utf-8"/> <xsl:template match="/"> <xsl:apply-templates select="/atom:feed"/> </xsl:template> <xsl:template match="/atom:feed"> <div id="content"> <h1> <xsl:value-of select="atom:title"/> </h1> <p> <xsl:value-of select="atom:subtitle"/> </p> <ul id="entries"> <xsl:apply-templates select="atom:entry"/> </ul> </div> </xsl:template> </xsl:stylesheet> This new template (line 12, above) matches <feed/> and starts to write the new HTML elements out to the output stream. The <xsl:value-of/> does exactly what you’d expect – it finds the value of the item specifed in its select attribute. With XPath you can select any element or attribute from the source XML. The last part is a repeat of the now familiar <xsl:apply-templates/> from before, but this time we’re using it inside of a called template. Yep, XSL is full of recursion… <xsl:template match="atom:entry"> <li class="entry"> <h2> <a href="{atom:link/@href}"> <xsl:value-of select="atom:title"/> </a> </h2> <p class="date"> (<xsl:value-of select="substring-before(atom:updated,'T')"/>) </p> <p class="content"> <xsl:value-of select="atom:content" disable-output-escaping="yes"/> </p> <xsl:apply-templates select="atom:category"/> </li> </xsl:template> The <xsl:template/> which matches atom:entry (line 1) occurs every time there is a <entry/> element in the source XML file. So in total that is 20 times, this is naturally why XSLT is full of recursion. This <xsl:template/> has been matched and therefore called higher up in the document, so we can start writing list elements directly to the output stream. The first part is simply a <h2/> with a link wrapped within it (lines 3-7). We can select attributes using XPath using @. The second part of this template selects the date, but performs a XPath string function on it. This means that we only get the date and not the time from the string (line 9). This is achieved by getting only the part of the string that exists before the T. Regular Expressions are not part of the XPath 1.0 string functions, although XPath 2.0 does include them. Because of this, in XSL we tend to rely heavily on the available XML output. The third part of the template (line 12) is a <xsl:value-of/> again, but this time we use an attribute of <xsl:value-of/> called disable output escaping to turn escaped characters back into XML. The very last section is another <xsl:apply-template/> call, taking us three templates deep. Do not worry, it is not uncommon to write XSL which go 20 or more templates deep! <xsl:template match="atom:category"> <xsl:for-each select="."> <xsl:element name="a"> <xsl:attribute name="rel"> <xsl:text>tag</xsl:text> </xsl:attribute> <xsl:attribute name="href"> <xsl:value-of select="concat(@scheme, @term)"/> </xsl:attribute> <xsl:value-of select="@term"/> </xsl:element> <xsl:text> </xsl:text> </xsl:for-each> </xsl:template> In our final <xsl:template/>, we see a combination of what we have done before with a couple of twists. Once we match atom:category we then count how many elements there are at that same level (line 2). The XPath . means ‘self’, so we count how many category elements are within the <entry/> element. Following that, we start to output a link with a rel attribute of the predefined text, tag (lines 4-6). In XSL you can just type text, but results can end up with strange whitespace if you do (although there are ways to simply remove all whitespace). The only new XPath function in this example is concat(), which simply combines what XPaths or text there might be in the brackets. We end the output for this tag with an actual tag name (line 10) and we add a space afterwards (line 12) so it won’t touch the next tag. (There are better ways to do this in XSL using the last() XPath function). After that, we go back to the <xsl:for-each/> element again if there is another category element, otherwise we end the <xsl:for-each/> loop and end this <xsl:template/>. A touch of style Because we’re using recursion through our templates, you will find this is the end of the templates and the rest of the XML will be ignored by the parser. Finally, we can add our CSS to finish up. (I have created one for Flickr and another for News feeds) <style type="text/css" media="screen">@import "flickr_overview.css?v=001";</style> So we end up with a nice simple to understand but also quick to write XSL which can be used on ATOM Flickr feeds and ATOM News feeds. With a little playing around with XSL, you can make XML beautiful again. All the files can be found in the zip file (14k) 2006 Ian Forrester ianforrester 2006-12-07T00:00:00+00:00 https://24ways.org/2006/beautiful-xml-with-xsl/ code
143 Marking Up a Tag Cloud Everyone’s doing it. The problem is, everyone’s doing it wrong. Harsh words, you might think. But the crimes against decent markup are legion in this area. You see, I’m something of a markup and semantics junkie. So I’m going to analyse some of the more well-known tag clouds on the internet, explain what’s wrong, and then show you one way to do it better. del.icio.us I think the first ever tag cloud I saw was on del.icio.us. Here’s how they mark it up. <div class="alphacloud"> <a href="/tag/.net" class="lb s2">.net</a> <a href="/tag/advertising" class=" s3">advertising</a> <a href="/tag/ajax" class=" s5">ajax</a> ... </div> Unfortunately, that is one of the worst examples of tag cloud markup I have ever seen. The page states that a tag cloud is a list of tags where size reflects popularity. However, despite describing it in this way to the human readers, the page’s author hasn’t described it that way in the markup. It isn’t a list of tags, just a bunch of anchors in a <div>. This is also inaccessible because a screenreader will not pause between adjacent links, and in some configurations will not announce the individual links, but rather all of the tags will be read as just one link containing a whole bunch of words. Markup crime number one. Flickr Ah, Flickr. The darling photo sharing site of the internet, and the biggest blind spot in every standardista’s vision. Forgive it for having atrocious markup and sometimes confusing UI because it’s just so much damn fun to use. Let’s see what they do. <p id="TagCloud">  <a href="/photos/tags/06/" style="font-size: 14px;">06</a>   <a href="/photos/tags/africa/" style="font-size: 12px;">africa</a>   <a href="/photos/tags/amsterdam/" style="font-size: 14px;">amsterdam</a>  ... </p> Again we have a simple collection of anchors like del.icio.us, only this time in a paragraph. But rather than using a class to represent the size of the tag they use an inline style. An inline style using a pixel-based font size. That’s so far away from the goal of separating style from content, they might as well use a <font> tag. You could theoretically parse that to extract the information, but you have more work to guess what the pixel sizes represent. Markup crime number two (and extra jail time for using non-breaking spaces purely for visual spacing purposes.) Technorati Ah, now. Here, you’d expect something decent. After all, the Overlord of microformats and King of Semantics Tantek Çelik works there. Surely we’ll see something decent here? <ol class="heatmap"> <li><em><em><em><em><a href="/tag/Britney+Spears">Britney Spears</a></em></em></em></em></li> <li><em><em><em><em><em><em><em><em><em><a href="/tag/Bush">Bush</a></em></em></em></em></em></em></em></em></em></li> <li><em><em><em><em><em><em><em><em><em><em><em><em><em><a href="/tag/Christmas">Christmas</a></em></em></em></em></em></em></em></em></em></em></em></em></em></li> ... <li><em><em><em><em><em><em><a href="/tag/SEO">SEO</a></em></em></em></em></em></em></li> <li><em><em><em><em><em><em><em><em><em><em><em><em><em><em><em><a href="/tag/Shopping">Shopping</a></em></em></em></em></em></em></em></em></em></em></em></em></em></em></em></li> ... </ol> Unfortunately it turns out not to be that decent, and stop calling me Shirley. It’s not exactly terrible code. It does recognise that a tag cloud is a list of links. And, since they’re in alphabetical order, that it’s an ordered list of links. That’s nice. However … fifteen nested <em> tags? FIFTEEN? That’s emphasis for you. Yes, it is parse-able, but it’s also something of a strange way of looking at emphasis. The HTML spec states that <em> is emphasis, and <strong> is for stronger emphasis. Nesting <em> tags seems counter to the idea that different tags are used for different levels of emphasis. Plus, if you had a screen reader that stressed the voice for emphasis, what would it do? Shout at you? Markup crime number three. So what should it be? As del.icio.us tells us, a tag cloud is a list of tags where the size that they are rendered at contains extra information. However, by hiding the extra context purely within the CSS or the HTML tags used, you are denying that context to some users. The basic assumption being made is that all users will be able to see the difference between font sizes, and this is demonstrably false. A better way to code a tag cloud is to put the context of the cloud within the content, not the markup or CSS alone. As an example, I’m going to take some of my favourite flickr tags and put them into a cloud which communicates the relative frequency of each tag. To start with a tag cloud in its most basic form is just a list of links. I am going to present them in alphabetical order, so I’ll use an ordered list. Into each list item I add the number of photos I have with that particular tag. The tag itself is linked to the page on flickr which contains those photos. So we end up with this first example. To display this as a traditional tag cloud, we need to alter it in a few ways: The items need to be displayed next to each other, rather than one-per-line The context information should be hidden from display (but not from screen readers) The tag should link to the page of items with that tag Displaying the items next to each other simply means setting the display of the list elements to inline. The context can be hidden by wrapping it in a <span> and then using the off-left method to hide it. And the link just means adding an anchor (with rel="tag" for some extra microformats bonus points). So, now we have a simple collection of links in our second example. The last stage is to add the sizes. Since we already have context in our content, the size is purely for visual rendering, so we can just use classes to define the different sizes. For my example, I’ll use a range of class names from not-popular through ultra-popular, in order of smallest to largest, and then use CSS to define different font sizes. If you preferred, you could always use less verbose class names such as size1 through size6. Anyway, adding some classes and CSS gives us our final example, a semantic and more accessible tag cloud. 2006 Mark Norman Francis marknormanfrancis 2006-12-09T00:00:00+00:00 https://24ways.org/2006/marking-up-a-tag-cloud/ code
147 Christmas Is In The AIR That’s right, Christmas is coming up fast and there’s plenty of things to do. Get the tree and lights up, get the turkey, buy presents and who know what else. And what about Santa? He’s got a list. I’m pretty sure he’s checking it twice. Sure, we could use an existing list making web site or even a desktop widget. But we’re geeks! What’s the fun in that? Let’s build our own to-do list application and do it with Adobe AIR! What’s Adobe AIR? Adobe AIR, formerly codenamed Apollo, is a runtime environment that runs on both Windows and OSX (with Linux support to follow). This runtime environment lets you build desktop applications using Adobe technologies like Flash and Flex. Oh, and HTML. That’s right, you web standards lovin’ maniac. You can build desktop applications that can run cross-platform using the trio of technologies, HTML, CSS and JavaScript. If you’ve tried developing with AIR before, you’ll need to get re-familiarized with the latest beta release as many things have changed since the last one (such as the API and restrictions within the sandbox.) To get started To get started in building an AIR application, you’ll need two basic things: The AIR runtime. The runtime is needed to run any AIR-based application. The SDK. The software development kit gives you all the pieces to test your application. Unzip the SDK into any folder you wish. You’ll also want to get your hands on the JavaScript API documentation which you’ll no doubt find yourself getting into before too long. (You can download it, too.) Also of interest, some development environments have support for AIR built right in. Aptana doesn’t have support for beta 3 yet but I suspect it’ll be available shortly. Within the SDK, there are two main tools that we’ll use: one to test the application (ADL) and another to build a distributable package of our application (ADT). I’ll get into this some more when we get to that stage of development. Building our To-do list application The first step to building an application within AIR is to create an XML file that defines our default application settings. I call mine application.xml, mostly because Aptana does that by default when creating a new AIR project. It makes sense though and I’ve stuck with it. Included in the templates folder of the SDK is an example XML file that you can use. The first key part to this after specifying things like the application ID, version, and filename, is to specify what the default content should be within the content tags. Enter in the name of the HTML file you wish to load. Within this HTML file will be our application. <content>ui.html</content> Create a new HTML document and name it ui.html and place it in the same directory as the application.xml file. The first thing you’ll want to do is copy over the AIRAliases.js file from the frameworks folder of the SDK and add a link to it within your HTML document. <script type="text/javascript" src="AIRAliases.js"></script> The aliases create shorthand links to all of the Flash-based APIs. Now is probably a good time to explain how to debug your application. Debugging our application So, with our XML file created and HTML file started, let’s try testing our ‘application’. We’ll need the ADL application located in BIN folder of the SDK and tell it to run the application.xml file. /path/to/adl /path/to/application.xml You can also just drag the XML file onto ADL and it’ll accomplish the same thing. If you just did that and noticed that your blank application didn’t load, you’d be correct. It’s running but isn’t visible. Which at this point means you’ll have to shut down the ADL process. Sorry about that! Changing the visibility You have two ways to make your application visible. You can do it automatically by setting the placing true in the visible tag within the application.xml file. <visible>true</visible> The other way is to do it programmatically from within your application. You’d want to do it this way if you had other startup tasks to perform before showing the interface. To turn the UI on programmatically, simple set the visible property of nativeWindow to true. <script type="text/javascript"> nativeWindow.visible = true; </script> Sandbox Security Now that we have an application that we can see when we start it, it’s time to build the to-do list application. In doing so, you’d probably think that using a JavaScript library is a really good idea — and it can be but there are some limitations within AIR that have to be considered. An HTML document, by default, runs within the application sandbox. You have full access to the AIR APIs but once the onload event of the window has fired, you’ll have a limited ability to make use of eval and other dynamic script injection approaches. This limits the ability of external sources from gaining access to everything the AIR API offers, such as database and local file system access. You’ll still be able to make use of eval for evaluating JSON responses, which is probably the most important if you wish to consume JSON-based services. If you wish to create a greater wall of security between AIR and your HTML document loading in external resources, you can create a child sandbox. We won’t need to worry about it for our application so I won’t go any further into it but definitely keep this in mind. Finally, our application Getting tired of all this preamble? Let’s actually build our to-do list application. I’ll use jQuery because it’s small and should suit our needs nicely. Let’s begin with some structure: <body> <input type="text" id="text" value=""> <input type="button" id="add" value="Add"> <ul id="list"></ul> </body> Now we need to wire up that button to actually add a new item to our to-do list. <script type="text/javascript"> $(document).ready(function(){ // make sure the application is visible nativeWindow.visible = true; $('#add').click(function(){ var t = $('#text').val(); if(t) { // use DOM methods to create the new list item var li = document.createElement('li'); // the extra space at the end creates a buffer between the text // and the delete link we're about to add li.appendChild(document.createTextNode(t + ' ')); // create the delete link var del = document.createElement('a'); // this makes it a true link. I feel dirty doing this. del.setAttribute('href', '#'); del.addEventListener('click', function(evt){ this.parentNode.parentNode.removeChild(this.parentNode); }); del.appendChild(document.createTextNode('[del]')); li.appendChild(del); // append everything to the list $('#list').append(li); //reset the text box $('#text').val(''); } }) }); </script> And just like that, we’ve got a to-do list! That’s it! Just never close your application and you’ll remember everything. Okay, that’s not very practical. You need to have some way of storing your to-do items until the next time you open up the application. Storing Data You’ve essentially got 4 different ways that you can store data: Using the local database. AIR comes with SQLLite built in. That means you can create tables and insert, update and select data from that database just like on a web server. Using the file system. You can also create files on the local machine. You have access to a few folders on the local system such as the documents folder and the desktop. Using EcryptedLocalStore. I like using the EcryptedLocalStore because it allows you to easily save key/value pairs and have that information encrypted. All this within just a couple lines of code. Sending the data to a remote API. Our to-do list could sync up with Remember the Milk, for example. To demonstrate some persistence, we’ll use the file system to store our files. In addition, we’ll let the user specify where the file should be saved. This way, we can create multiple to-do lists, keeping them separate and organized. The application is now broken down into 4 basic tasks: Load data from the file system. Perform any interface bindings. Manage creating and deleting items from the list. Save any changes to the list back to the file system. Loading in data from the file system When the application starts up, we’ll prompt the user to select a file or specify a new to-do list. Within AIR, there are 3 main file objects: File, FileMode, and FileStream. File handles file and path names, FileMode is used as a parameter for the FileStream to specify whether the file should be read-only or for write access. The FileStream object handles all the read/write activity. The File object has a number of shortcuts to default paths like the documents folder, the desktop, or even the application store. In this case, we’ll specify the documents folder as the default location and then use the browseForSave method to prompt the user to specify a new or existing file. If the user specifies an existing file, they’ll be asked whether they want to overwrite it. var store = air.File.documentsDirectory; var fileStream = new air.FileStream(); store.browseForSave("Choose To-do List"); Then we add an event listener for when the user has selected a file. When the file is selected, we check to see if the file exists and if it does, read in the contents, splitting the file on new lines and creating our list items within the interface. store.addEventListener(air.Event.SELECT, fileSelected); function fileSelected() { air.trace(store.nativePath); // load in any stored data var byteData = new air.ByteArray(); if(store.exists) { fileStream.open(store, air.FileMode.READ); fileStream.readBytes(byteData, 0, store.size); fileStream.close(); if(byteData.length > 0) { var s = byteData.readUTFBytes(byteData.length); oldlist = s.split(“\r\n”); // create todolist items for(var i=0; i < oldlist.length; i++) { createItem(oldlist[i], (new Date()).getTime() + i ); } } } } Perform Interface Bindings This is similar to before where we set the click event on the Add button but we’ve moved the code to save the list into a separate function. $('#add').click(function(){ var t = $('#text').val(); if(t){ // create an ID using the time createItem(t, (new Date()).getTime() ); } }) Manage creating and deleting items from the list The list management is now in its own function, similar to before but with some extra information to identify list items and with calls to save our list after each change. function createItem(t, id) { if(t.length == 0) return; // add it to the todo list todolist[id] = t; // use DOM methods to create the new list item var li = document.createElement('li'); // the extra space at the end creates a buffer between the text // and the delete link we're about to add li.appendChild(document.createTextNode(t + ' ')); // create the delete link var del = document.createElement('a'); // this makes it a true link. I feel dirty doing this. del.setAttribute('href', '#'); del.addEventListener('click', function(evt){ var id = this.id.substr(1); delete todolist[id]; // remove the item from the list this.parentNode.parentNode.removeChild(this.parentNode); saveList(); }); del.appendChild(document.createTextNode('[del]')); del.id = 'd' + id; li.appendChild(del); // append everything to the list $('#list').append(li); //reset the text box $('#text').val(''); saveList(); } Save changes to the file system Any time a change is made to the list, we update the file. The file will always reflect the current state of the list and we’ll never have to click a save button. It just iterates through the list, adding a new line to each one. function saveList(){ if(store.isDirectory) return; var packet = ''; for(var i in todolist) { packet += todolist[i] + '\r\n'; } var bytes = new air.ByteArray(); bytes.writeUTFBytes(packet); fileStream.open(store, air.FileMode.WRITE); fileStream.writeBytes(bytes, 0, bytes.length); fileStream.close(); } One important thing to mention here is that we check if the store is a directory first. The reason we do this goes back to our browseForSave call. If the user cancels the dialog without selecting a file first, then the store points to the documentsDirectory that we set it to initially. Since we haven’t specified a file, there’s no place to save the list. Hopefully by this point, you’ve been thinking of some cool ways to pimp out your list. Now we need to package this up so that we can let other people use it, too. Creating a Package Now that we’ve created our application, we need to package it up so that we can distribute it. This is a two step process. The first step is to create a code signing certificate (or you can pay for one from Thawte which will help authenticate you as an AIR application developer). To create a self-signed certificate, run the following command. This will create a PFX file that you’ll use to sign your application. adt -certificate -cn todo24ways 1024-RSA todo24ways.pfx mypassword After you’ve done that, you’ll need to create the package with the certificate adt -package -storetype pkcs12 -keystore todo24ways.pfx todo24ways.air application.xml . The important part to mention here is the period at the end of the command. We’re telling it to package up all files in the current directory. After that, just run the AIR file, which will install your application and run it. Important things to remember about AIR When developing an HTML application, the rendering engine is Webkit. You’ll thank your lucky stars that you aren’t struggling with cross-browser issues. (My personal favourites are multiple backgrounds and border radius!) Be mindful of memory leaks. Things like Ajax calls and event binding can cause applications to slowly leak memory over time. Web pages are normally short lived but desktop applications are often open for hours, if not days, and you may find your little desktop application taking up more memory than anything else on your machine! The WebKit runtime itself can also be a memory hog, usually taking about 15MB just for itself. If you create multiple HTML windows, it’ll add another 15MB to your memory footprint. Our little to-do list application shouldn’t be much of a concern, though. The other important thing to remember is that you’re still essentially running within a Flash environment. While you probably won’t notice this working in small applications, the moment you need to move to multiple windows or need to accomplish stuff beyond what HTML and JavaScript can give you, the need to understand some of the Flash-based elements will become more important. Lastly, the other thing to remember is that HTML links will load within the AIR application. If you want a link to open in the users web browser, you’ll need to capture that event and handle it on your own. The following code takes the HREF from a clicked link and opens it in the default web browser. air.navigateToURL(new air.URLRequest(this.href)); Only the beginning Of course, this is only the beginning of what you can do with Adobe AIR. You don’t have the same level of control as building a native desktop application, such as being able to launch other applications, but you do have more control than what you could have within a web application. Check out the Adobe AIR Developer Center for HTML and Ajax for tutorials and other resources. Now, go forth and create your desktop applications and hopefully you finish all your shopping before Christmas! Download the example files. 2007 Jonathan Snook jonathansnook 2007-12-19T00:00:00+00:00 https://24ways.org/2007/christmas-is-in-the-air/ code
153 JavaScript Internationalisation or: Why Rudolph Is More Than Just a Shiny Nose Dunder sat, glumly staring at the computer screen. “What’s up, Dunder?” asked Rudolph, entering the stable and shaking off the snow from his antlers. “Well,” Dunder replied, “I’ve just finished coding the new reindeer intranet Santa Claus asked me to do. You know how he likes to appear to be at the cutting edge, talking incessantly about Web 2.0, AJAX, rounded corners; he even spooked Comet recently by talking about him as if he were some pushy web server. “I’ve managed to keep him happy, whilst also keeping it usable, accessible, and gleaming — and I’m still on the back row of the sleigh! But anyway, given the elves will be the ones using the site, and they come from all over the world, the site is in multiple languages. Which is great, except when it comes to the preview JavaScript I’ve written for the reindeer order form. Here, have a look…” As he said that, he brought up the textileRef:8234272265470b85d91702:linkStartMarker:“order form in French”:/examples/javascript-internationalisation/initial.fr.html on the screen. (Same in English). “Looks good,” said Rudolph. “But if I add some items,” said Dunder, “the preview appears in English, as it’s hard-coded in the JavaScript. I don’t want separate code for each language, as that’s just silly — I thought about just having if statements, but that doesn’t scale at all…” “And there’s more, you aren’t displaying large numbers in French properly, either,” added Rudolph, who had been playing and looking at part of the source code: function update_text() { var hay = getValue('hay'); var carrots = getValue('carrots'); var bells = getValue('bells'); var total = 50 * bells + 30 * hay + 10 * carrots; var out = 'You are ordering ' + pretty_num(hay) + ' bushel' + pluralise(hay) + ' of hay, ' + pretty_num(carrots) + ' carrot' + pluralise(carrots) + ', and ' + pretty_num(bells) + ' shiny bell' + pluralise(bells) + ', at a total cost of <strong>' + pretty_num(total) + '</strong> gold pieces. Thank you.'; document.getElementById('preview').innerHTML = out; } function pretty_num(n) { n += ''; var o = ''; for (i=n.length; i>3; i-=3) { o = ',' + n.slice(i-3, i) + o; } o = n.slice(0, i) + o; return o; } function pluralise(n) { if (n!=1) return 's'; return ''; } “Oh, botheration!” cried Dunder. “This is just so complicated.” “It doesn’t have to be,” said Rudolph, “you just have to think about things in a slightly different way from what you’re used to. As we’re only a simple example, we won’t be able to cover all possibilities, but for starters, we need some way of providing different information to the script dependent on the language. We’ll create a global i18n object, say, and fill it with the correct language information. The first variable we’ll need will be a thousands separator, and then we can change the pretty_num function to use that instead: function pretty_num(n) { n += ''; var o = ''; for (i=n.length; i>3; i-=3) { o = i18n.thousands_sep + n.slice(i-3, i) + o; } o = n.slice(0, i) + o; return o; } “The i18n object will also contain our translations, which we will access through a function called _() — that’s just an underscore. Other languages have a function of the same name doing the same thing. It’s very simple: function _(s) { if (typeof(i18n)!='undefined' && i18n[s]) { return i18n[s]; } return s; } “So if a translation is available and provided, we’ll use that; otherwise we’ll default to the string provided — which is helpful if the translation begins to lag behind the site’s text at all, as at least something will be output.” “Got it,” said Dunder. “ _('Hello Dunder') will print the translation of that string, if one exists, ‘Hello Dunder’ if not.” “Exactly. Moving on, your plural function breaks even in English if we have a word where the plural doesn’t add an s — like ‘children’.” “You’re right,” said Dunder. “How did I miss that?” “No harm done. Better to provide both singular and plural words to the function and let it decide which to use, performing any translation as well: function pluralise(s, p, n) { if (n != 1) return _(p); return _(s); } “We’d have to provide different functions for different languages as we employed more elves and got more complicated — for example, in Polish, the word ‘file’ pluralises like this: 1 plik, 2-4 pliki, 5-21 plików, 22-24 pliki, 25-31 plików, and so on.” (More information on plural forms) “Gosh!” “Next, as different languages have different word orders, we must stop using concatenation to construct sentences, as it would be impossible for other languages to fit in; we have to keep coherent strings together. Let’s rewrite your update function, and then go through it: function update_text() { var hay = getValue('hay'); var carrots = getValue('carrots'); var bells = getValue('bells'); var total = 50 * bells + 30 * hay + 10 * carrots; hay = sprintf(pluralise('%s bushel of hay', '%s bushels of hay', hay), pretty_num(hay)); carrots = sprintf(pluralise('%s carrot', '%s carrots', carrots), pretty_num(carrots)); bells = sprintf(pluralise('%s shiny bell', '%s shiny bells', bells), pretty_num(bells)); var list = sprintf(_('%s, %s, and %s'), hay, carrots, bells); var out = sprintf(_('You are ordering %s, at a total cost of <strong>%s</strong> gold pieces.'), list, pretty_num(total)); out += ' '; out += _('Thank you.'); document.getElementById('preview').innerHTML = out; } “ sprintf is a function in many other languages that, given a format string and some variables, slots the variables into place within the string. JavaScript doesn’t have such a function, so we’ll write our own. Again, keep it simple for now, only integers and strings; I’m sure more complete ones can be found on the internet. function sprintf(s) { var bits = s.split('%'); var out = bits[0]; var re = /^([ds])(.*)$/; for (var i=1; i<bits.length; i++) { p = re.exec(bits[i]); if (!p || arguments[i]==null) continue; if (p[1] == 'd') { out += parseInt(arguments[i], 10); } else if (p[1] == 's') { out += arguments[i]; } out += p[2]; } return out; } “Lastly, we need to create one file for each language, containing our i18n object, and then include that from the relevant HTML. Here’s what a blank translation file would look like for your order form: var i18n = { thousands_sep: ',', "%s bushel of hay": '', "%s bushels of hay": '', "%s carrot": '', "%s carrots": '', "%s shiny bell": '', "%s shiny bells": '', "%s, %s, and %s": '', "You are ordering %s, at a total cost of <strong>%s</strong> gold pieces.": '', "Thank you.": '' }; “If you implement this across the intranet, you’ll want to investigate the xgettext program, which can automatically extract all strings that need translating from all sorts of code files into a standard .po file (I think Python mode works best for JavaScript). You can then use a different program to take the translated .po file and automatically create the language-specific JavaScript files for us.” (e.g. German .po file for PledgeBank, mySociety’s .po-.js script, example output) With a flourish, Rudolph finished editing. “And there we go, localised JavaScript in English, French, or German, all using the same main code.” “Thanks so much, Rudolph!” said Dunder. “I’m not just a pretty nose!” Rudolph quipped. “Oh, and one last thing — please comment liberally explaining the context of strings you use. Your translator will thank you, probably at the same time as they point out the four hundred places you’ve done something in code that only works in your language and no-one else’s…” Thanks to Tim Morley and Edmund Grimley Evans for the French and German translations respectively. 2007 Matthew Somerville matthewsomerville 2007-12-08T00:00:00+00:00 https://24ways.org/2007/javascript-internationalisation/ code
162 Conditional Love “Browser.” The four-letter word of web design. I mean, let’s face it: on the good days, when things just work in your target browsers, it’s marvelous. The air smells sweeter, birds’ songs sound more melodious, and both your design and your code are looking sharp. But on the less-than-good days (which is, frankly, most of them), you’re compelled to tie up all your browsers in a sack, heave them into the nearest river, and start designing all-imagemap websites. We all play favorites, after all: some will swear by Firefox, Opera fans are allegedly legion, and others still will frown upon anything less than the latest WebKit nightly. Thankfully, we do have an out for those little inconsistencies that crop up when dealing with cross-browser testing: CSS patches. Spare the Rod, Hack the Browser Before committing browsercide over some rendering bug, a designer will typically reach for a snippet of CSS fix the faulty browser. Historically referred to as “hacks,” I prefer Dan Cederholm’s more client-friendly alternative, “patches”. But whatever you call them, CSS patches all work along the same principle: supply the proper property value to the good browsers, while giving higher maintenance other browsers an incorrect value that their frustrating idiosyncratic rendering engine can understand. Traditionally, this has been done either by exploiting incomplete CSS support: #content { height: 1%; // Let's force hasLayout for old versions of IE. line-height: 1.6; padding: 1em; } html>body #content { height: auto; // Modern browsers get a proper height value. } or by exploiting bugs in their rendering engine to deliver alternate style rules: #content p { font-size: .8em; /* Hide from Mac IE5 \*/ font-size: .9em; /* End hiding from Mac IE5 */ } We’ve even used these exploits to serve up whole stylesheets altogether: @import url("core.css"); @media tty { i{content:"\";/*" "*/}} @import 'windows-ie5.css'; /*";} }/* */ The list goes on, and on, and on. For every browser, for every bug, there’s a patch available to fix some rendering bug. But after some time working with standards-based layouts, I’ve found that CSS patches, as we’ve traditionally used them, become increasingly difficult to maintain. As stylesheets are modified over the course of a site’s lifetime, inline fixes we’ve written may become obsolete, making them difficult to find, update, or prune out of our CSS. A good patch requires a constant gardener to ensure that it adds more than just bloat to a stylesheet, and inline patches can be very hard to weed out of a decently sized CSS file. Giving the Kids Separate Rooms Since I joined Airbag Industries earlier this year, every project we’ve worked on has this in the head of its templates: <link rel="stylesheet" href="-/css/screen/main.css" type="text/css" media="screen, projection" /> <!--[if lt IE 7]> <link rel="stylesheet" href="-/css/screen/patches/win-ie-old.css" type="text/css" media="screen, projection" /> <![endif]--> <!--[if gte IE 7]> <link rel="stylesheet" href="-/css/screen/patches/win-ie7-up.css" type="text/css" media="screen, projection" /> <![endif]--> The first element is, simply enough, a link element that points to the project’s main CSS file. No patches, no hacks: just pure, modern browser-friendly style rules. Which, nine times out of ten, will net you a design that looks like spilled eggnog in various versions of Internet Explorer. But don’t reach for the mulled wine quite yet. Immediately after, we’ve got a brace of conditional comments wrapped around two other link elements. These odd-looking comments allow us to selectively serve up additional stylesheets just to the version of IE that needs them. We’ve got one for IE 6 and below: <!--[if lt IE 7]> <link rel="stylesheet" href="-/css/screen/patches/win-ie-old.css" type="text/css" media="screen, projection" /> <![endif]--> And another for IE7 and above: <!--[if gte IE 7]> <link rel="stylesheet" href="-/css/screen/patches/win-ie7-up.css" type="text/css" media="screen, projection" /> <![endif]--> Microsoft’s conditional comments aren’t exactly new, but they can be a valuable alternative to cooking CSS patches directly into a master stylesheet. And though they’re not a W3C-approved markup structure, I think they’re just brilliant because they innovate within the spec: non-IE devices will assume that the comments are just that, and ignore the markup altogether. This does, of course, mean that there’s a little extra markup in the head of our documents. But this approach can seriously cut down on the unnecessary patches served up to the browsers that don’t need them. Namely, we no longer have to write rules like this in our main stylesheet: #content { height: 1%; // Let's force hasLayout for old versions of IE. line-height: 1.6; padding: 1em; } html>body #content { height: auto; // Modern browsers get a proper height value. } Rather, we can simply write an un-patched rule in our core stylesheet: #content { line-height: 1.6; padding: 1em; } And now, our patch for older versions of IE goes in—you guessed it—the stylesheet for older versions of IE: #content { height: 1%; } The hasLayout patch is applied, our design’s repaired, and—most importantly—the patch is only seen by the browser that needs it. The “good” browsers don’t have to incur any added stylesheet weight from our IE patches, and Internet Explorer gets the conditional love it deserves. Most importantly, this “compartmentalized” approach to CSS patching makes it much easier for me to patch and maintain the fixes applied to a particular browser. If I need to track down a bug for IE7, I don’t need to scroll through dozens or hundreds of rules in my core stylesheet: instead, I just open the considerably slimmer IE7-specific patch file, make my edits, and move right along. Even Good Children Misbehave While IE may occupy the bulk of our debugging time, there’s no denying that other popular, modern browsers will occasionally disagree on how certain bits of CSS should be rendered. But without something as, well, pimp as conditional comments at our disposal, how do we bring the so-called “good browsers” back in line with our design? Assuming you’re loving the “one patch file per browser” model as much as I do, there’s just one alternative: JavaScript. function isSaf() { var isSaf = (document.childNodes && !document.all && !navigator.taintEnabled && !navigator.accentColorName) ? true : false; return isSaf; } function isOp() { var isOp = (window.opera) ? true : false; return isOp; } Instead of relying on dotcom-era tactics of parsing the browser’s user-agent string, we’re testing here for support for various DOM objects, whose presence or absence we can use to reasonably infer the browser we’re looking at. So running the isOp() function, for example, will test for Opera’s proprietary window.opera object, and thereby accurately tell you if your user’s running Norway’s finest browser. With scripts such as isOp() and isSaf() in place, you can then reasonably test which browser’s viewing your content, and insert additional link elements as needed. function loadPatches(dir) { if (document.getElementsByTagName() && document.createElement()) { var head = document.getElementsByTagName("head")[0]; if (head) { var css = new Array(); if (isSaf()) { css.push("saf.css"); } else if (isOp()) { css.push("opera.css"); } if (css.length) { var link = document.createElement("link"); link.setAttribute("rel", "stylesheet"); link.setAttribute("type", "text/css"); link.setAttribute("media", "screen, projection"); for (var i = 0; i < css.length; i++) { var tag = link.cloneNode(true); tag.setAttribute("href", dir + css[0]); head.appendChild(tag); } } } } } Here, we’re testing the results of isSaf() and isOp(), one after the other. For each function that returns true, then the name of a new stylesheet is added to the oh-so-cleverly named css array. Then, for each entry in css, we create a new link element, point it at our patch file, and insert it into the head of our template. Fire it up using your favorite onload or DOMContentLoaded function, and you’re good to go. Scripteat Emptor At this point, some of the audience’s more conscientious ‘scripters may be preparing to lob figgy pudding at this author’s head. And that’s perfectly understandable; relying on JavaScript to patch CSS chafes a bit against the normally clean separation we have between our pages’ content, presentation, and behavior layers. And beyond the philosophical concerns, this approach comes with a few technical caveats attached: Browser detection? So un-133t. Browser detection is not something I’d typically recommend. Whenever possible, a proper DOM script should check for the support of a given object or method, rather than the device with which your users view your content. It’s JavaScript, so don’t count on it being available. According to one site, roughly four percent of Internet users don’t have JavaScript enabled. Your site’s stats might be higher or lower than this number, but still: don’t expect that every member of your audience will see these additional stylesheets, and ensure that your content’s still accessible with JS turned off. Be a constant gardener. The sample isSaf() and isOp() functions I’ve written will tell you if the user’s browser is Safari or Opera. As a result, stylesheets written to patch issues in an old browser may break when later releases repair the relevant CSS bugs. You can, of course, add logic to these simple little scripts to serve up version-specific stylesheets, but that way madness may lie. In any event, test your work vigorously, and keep testing it when new versions of the targeted browsers come out. Make sure that a patch written today doesn’t become a bug tomorrow. Patching Firefox, Opera, and Safari isn’t something I’ve had to do frequently: still, there have been occasions where the above script’s come in handy. Between conditional comments, careful CSS auditing, and some judicious JavaScript, browser-based bugs can be handled with near-surgical precision. So pass the ‘nog. It’s patchin’ time. 2007 Ethan Marcotte ethanmarcotte 2007-12-15T00:00:00+00:00 https://24ways.org/2007/conditional-love/ code
171 Rock Solid HTML Emails At some stage in your career, it’s likely you’ll be asked by a client to design a HTML email. Before you rush to explain that all the cool kids are using social media, keep in mind that when done correctly, email is still one of the best ways to promote you and your clients online. In fact, a recent survey showed that every dollar spent on email marketing this year generated more than $40 in return. That’s more than any other marketing channel, including the cool ones. There are a whole host of ingredients that contribute to a good email marketing campaign. Permission, relevance, timeliness and engaging content are all important. Even so, the biggest challenge for designers still remains building an email that renders well across all the popular email clients. Same same, but different Before getting into the details, there are some uncomfortable facts that those new to HTML email should be aware of. Building an email is not like building for the web. While web browsers continue their onward march towards standards, many email clients have stubbornly stayed put. Some have even gone backwards. In 2007, Microsoft switched the Outlook rendering engine from Internet Explorer to Word. Yes, as in the word processor. Add to this the quirks of the major web-based email clients like Gmail and Hotmail, sprinkle in a little Lotus Notes and you’ll soon realize how different the email game is. While it’s not without its challenges, rest assured it can be done. In my experience the key is to focus on three things. First, you should keep it simple. The more complex your email design, the more likely is it to choke on one of the popular clients with poor standards support. Second, you need to take your coding skills back a good decade. That often means nesting tables, bringing CSS inline and following the coding guidelines I’ll outline below. Finally, you need to test your designs regularly. Just because a template looks nice in Hotmail now, doesn’t mean it will next week. Setting your lowest common denominator To maintain your sanity, it’s a good idea to decide exactly which email clients you plan on supporting when building a HTML email. While general research is helpful, the email clients your subscribers are using can vary significantly from list to list. If you have the time there are a number of tools that can tell you specifically which email clients your subscribers are using. Trust me, if the testing shows almost none of them are using a client like Lotus Notes, save yourself some frustration and ignore it altogether. Knowing which email clients you’re targeting not only makes the building process easier, it can save you lots of time in the testing phase too. For the purpose of this article, I’ll be sharing techniques that give the best results across all of the popular clients, including the notorious ones like Gmail, Lotus Notes 6 and Outlook 2007. Just remember that pixel perfection in all email clients is a pipe dream. Let’s get started. Use tables for layout Because clients like Gmail and Outlook 2007 have poor support for float, margin and padding, you’ll need to use tables as the framework of your email. While nested tables are widely supported, consistent treatment of width, margin and padding within table cells is not. For the best results, keep the following in mind when coding your table structure. Set the width in each cell, not the table When you combine table widths, td widths, td padding and CSS padding into an email, the final result is different in almost every email client. The most reliable way to set the width of your table is to set a width for each cell, not for the table itself. <table cellspacing="0" cellpadding="10" border="0"> <tr> <td width="80"></td> <td width="280"></td> </tr> </table> Never assume that if you don’t specify a cell width the email client will figure it out. It won’t. Also avoid using percentage based widths. Clients like Outlook 2007 don’t respect them, especially for nested tables. Stick to pixels. If you want to add padding to each cell, use either the cellpadding attribute of the table or CSS padding for each cell, but never combine the two. Err toward nesting Table nesting is far more reliable than setting left and right margins or padding for table cells. If you can achieve the same effect by table nesting, that will always give you the best result across the buggier email clients. Use a container table for body background colors Many email clients ignore background colors specified in your CSS or the <body> tag. To work around this, wrap your entire email with a 100% width table and give that a background color. <table cellspacing="0" cellpadding="0" border="0" width="100%"> <tr> <td bgcolor=”#000000”> Your email code goes here. </td> </tr> </table> You can use the same approach for background images too. Just remember that some email clients don’t support them, so always provide a fallback color. Avoid unnecessary whitespace in table cells Where possible, avoid whitespace between your <td> tags. Some email clients (ahem, Yahoo! and Hotmail) can add additional padding above or below the cell contents in some scenarios, breaking your design for no apparent reason. CSS and general font formatting While some email designers do their best to avoid CSS altogether and rely on the dreaded <font> tag, the truth is many CSS properties are well supported by most email clients. See this comprehensive list of CSS support across the major clients for a good idea of the safe properties and those that should be avoided. Always move your CSS inline Gmail is the culprit for this one. By stripping the CSS from the <head> and <body> of any email, we’re left with no choice but to move all CSS inline. The good news is this is something you can almost completely automate. Free services like Premailer will move all CSS inline with the click of a button. I recommend leaving this step to the end of your build process so you can utilize all the benefits of CSS. Avoid shorthand for fonts and hex notation A number of email clients reject CSS shorthand for the font property. For example, never set your font styles like this. p { font:bold 1em/1.2em georgia,times,serif; } Instead, declare the properties individually like this. p { font-weight: bold; font-size: 1em; line-height: 1.2em; font-family: georgia,times,serif; } While we’re on the topic of fonts, I recently tested every conceivable variation of @font-face across the major email clients. The results were dismal, so unfortunately it’s web-safe fonts in email for the foreseeable future. When declaring the color property in your CSS, some email clients don’t support shorthand hexadecimal colors like color:#f60; instead of color:#ff6600;. Stick to the longhand approach for the best results. Paragraphs Just like table cell spacing, paragraph spacing can be tricky to get a consistent result across the board. I’ve seen many designers revert to using double <br /> or DIVs with inline CSS margins to work around these shortfalls, but recent testing showed that paragraph support is now reliable enough to use in most cases (there was a time when Yahoo! didn’t support the paragraph tag at all). The best approach is to set the margin inline via CSS for every paragraph in your email, like so: p { margin: 0 0 1.6em 0; } Again, do this via CSS in the head when building your email, then use Premailer to bring it inline for each paragraph later. If part of your design is height-sensitive and calls for pixel perfection, I recommend avoiding paragraphs altogether and setting the text formatting inline in the table cell. You might need to use table nesting or cellpadding / CSS to get the desired result. Here’s an example: <td width="200" style="font-weight:bold; font-size:1em; line-height:1.2em; font-family:georgia,'times',serif;">your height sensitive text</td> Links Some email clients will overwrite your link colors with their defaults, and you can avoid this by taking two steps. First, set a default color for each link inline like so: <a href="http://somesite.com/" style="color:#ff00ff">this is a link</a> Next, add a redundant span inside the a tag. <a href="http://somesite.com/" style="color:#ff00ff"><span style="color:#ff00ff">this is a link</span></a> To some this may be overkill, but if link color is important to your design then a superfluous span is the best way to achieve consistency. Images in HTML emails The most important thing to remember about images in email is that they won’t be visible by default for many subscribers. If you start your design with that assumption, it forces you to keep things simple and ensure no important content is suppressed by image blocking. With this in mind, here are the essentials to remember when using images in HTML email: Avoid spacer images While the combination of spacer images and nested tables was popular on the web ten years ago, image blocking in many email clients has ruled it out as a reliable technique today. Most clients replace images with an empty placeholder in the same dimensions, others strip the image altogether. Given image blocking is on by default in most email clients, this can lead to a poor first impression for many of your subscribers. Stick to fixed cell widths to keep your formatting in place with or without images. Always include the dimensions of your image If you forget to set the dimensions for each image, a number of clients will invent their own sizes when images are blocked and break your layout. Also, ensure that any images are correctly sized before adding them to your email. Some email clients will ignore the dimensions specified in code and rely on the true dimensions of your image. Avoid PNGs Lotus Notes 6 and 7 don’t support 8-bit or 24-bit PNG images, so stick with the GIF or JPG formats for all images, even if it means some additional file size. Provide fallback colors for background images Outlook 2007 has no support for background images (aside from this hack to get full page background images working). If you want to use a background image in your design, always provide a background color the email client can fall back on. This solves both the image blocking and Outlook 2007 problem simultaneously. Don’t forget alt text Lack of standards support means email clients have long destroyed the chances of a semantic and accessible HTML email. Even still, providing alt text is important from an image blocking perspective. Even with images suppressed by default, many email clients will display the provided alt text instead. Just remember that some email clients like Outlook 2007, Hotmail and Apple Mail don’t support alt text at all when images are blocked. Use the display hack for Hotmail For some inexplicable reason, Windows Live Hotmail adds a few pixels of additional padding below images. A workaround is to set the display property like so. img {display:block;} This removes the padding in Hotmail and still gives you the predicable result in other email clients. Don’t use floats Both Outlook 2007 and earlier versions of Notes offer no support for the float property. Instead, use the align attribute of the img tag to float images in your email. <img src="image.jpg" align="right"> If you’re seeing strange image behavior in Yahoo! Mail, adding align=“top” to your images can often solve this problem. Video in email With no support for JavaScript or the object tag, video in email (if you can call it that) has long been limited to animated gifs. However, some recent research I did into the HTML5 video tag in email showed some promising results. Turns out HTML5 video does work in many email clients right now, including Apple Mail, Entourage 2008, MobileMe and the iPhone. The real benefit of this approach is that if the video isn’t supported, you can provide reliable fallback content such as an animated GIF or a clickable image linking to the video in the browser. Of course, the question of whether you should add video to email is another issue altogether. If you lean toward the “yes” side check out the technique with code samples. What about mobile email? The mobile email landscape was a huge mess until recently. With the advent of the iPhone, Android and big improvements from Palm and RIM, it’s becoming less important to think of mobile as a different email platform altogether. That said, there are a few key pointers to keep in mind when coding your emails to get a decent result for your more mobile subscribers. Keep the width less than 600 pixels Because of email client preview panes, this rule was important long before mobile email clients came of age. In truth, the iPhone and Pre have a viewport of 320 pixels, the Droid 480 pixels and the Blackberry models hover around 360 pixels. Sticking to a maximum of 600 pixels wide ensures your design should still be readable when scaled down for each device. This width also gives good results in desktop and web-based preview panes. Be aware of automatic text resizing In what is almost always a good feature, email clients using webkit (such as the iPhone, Pre and Android) can automatically adjust font sizes to increase readability. If testing shows this feature is doing more harm than good to your design, you can always disable it with the following CSS rule: -webkit-text-size-adjust: none; Don’t forget to test While standards support in email clients hasn’t made much progress in the last few years, there has been continual change (for better or worse) in some email clients. Web-based providers like Yahoo!, Hotmail and Gmail are notorious for this. On countless occasions I’ve seen a proven design suddenly stop working without explanation. For this reason alone it’s important to retest your email designs on a regular basis. I find a quick test every month or so does the trick, especially in the web-based clients. The good news is that after designing and testing a few HTML email campaigns, you will find that order will emerge from the chaos. Many of these pitfalls will become quite predictable and your inbox-friendly designs will take shape with them in mind. Looking ahead Designing HTML email can be a tough pill for new designers and standardistas to swallow, especially given the fickle and retrospective nature of email clients today. With HTML5 just around the corner we are entering a new, uncertain phase. Will email client developers take the opportunity to repent on past mistakes and bring email clients into the present? The aim of groups such as the Email Standards Project is to make much of the above advice as redundant as the long-forgotten <blink> and <marquee> tags, however, only time will tell if this is to become a reality. Although not the most compliant (or fashionable) medium, the results speak for themselves – email is, and will continue to be one of the most successful and targeted marketing channels available to you. As a designer with HTML email design skills in your arsenal, you have the opportunity to not only broaden your service offering, but gain a unique appreciation of how vital standards are. Next steps Ready to get started? There are a number of HTML email design galleries to provide ideas and inspiration for your own designs. http://www.campaignmonitor.com/gallery/ http://htmlemailgallery.com/ http://inboxaward.com/ Enjoy! 2009 David Greiner davidgreiner 2009-12-13T00:00:00+00:00 https://24ways.org/2009/rock-solid-html-emails/ code
177 HTML5: Tool of Satan, or Yule of Santa? It would lead to unseasonal arguments to discuss the title of this piece here, and the arguments are as indigestible as the fourth turkey curry of the season, so we’ll restrict our article to the practical rather than the philosophical: what HTML5 can you reasonably expect to be able to use reliably cross-browser in the early months of 2010? The answer is that you can use more than you might think, due to the seasonal tinsel of feature-detection and using the sparkly pixie-dust of IE-only VML (but used in a way that won’t damage your Elf). Canvas canvas is a 2D drawing API that defines a blank area of the screen of arbitrary size, and allows you to draw on it using JavaScript. The pictures can be animated, such as in this canvas mashup of Wolfenstein 3D and Flickr. (The difference between canvas and SVG is that SVG uses vector graphics, so is infinitely scalable. It also keeps a DOM, whereas canvas is just pixels so you have to do all your own book-keeping yourself in JavaScript if you want to know where aliens are on screen, or do collision detection.) Previously, you needed to do this using Adobe Flash or Java applets, requiring plugins and potentially compromising keyboard accessibility. Canvas drawing is supported now in Opera, Safari, Chrome and Firefox. The reindeer in the corner is, of course, Internet Explorer, which currently has zero support for canvas (or SVG, come to that). Now, don’t pull a face like all you’ve found in your Yuletide stocking is a mouldy satsuma and a couple of nuts—that’s not the end of the story. Canvas was originally an Apple proprietary technology, and Internet Explorer had a similar one called Vector Markup Language which was submitted to the W3C for standardisation in 1998 but which, unlike canvas, was not blessed with retrospective standardisation. What you need, then, is some way for Internet Explorer to translate canvas to VML on-the-fly, while leaving the other, more standards-compliant browsers to use the HTML5. And such a way exists—it’s a JavaScript library called excanvas. It’s downloadable from http://code.google.com/p/explorercanvas/ and it’s simple to include it via a conditional comment in the head for IE: <!--[if IE]> <script src="excanvas.js"></script> <![endif]--> Simply include this, and your canvas will be natively supported in the modern browsers (and the library won’t even be downloaded) whereas IE will suddenly render your canvas using its own VML engine. Be sure, however, to check it carefully, as the IE JavaScript engine isn’t so fast and you’ll need to be sure that performance isn’t too degraded to use. Forms Since the beginning of the Web, developers have been coding forms, and then writing JavaScript to check whether an input is a correctly formed email address, URL, credit card number or conforms to some other pattern. The cumulative labour of the world’s developers over the last 15 years makes whizzing round in a sleigh and delivering presents seem like popping to the corner shop in comparison. With HTML5, that’s all about to change. As Yaili began to explore on Day 3, a host of new attributes to the input element provide built-in validation for email address formats (input type=email), URLs (input type=url), any pattern that can be expressed with a JavaScript-syntax regex (pattern="[0-9][A-Z]{3}") and the like. New attributes such as required, autofocus, input type=number min=3 max=50 remove much of the tedious JavaScript from form validation. Other, really exciting input types are available (see all input types). The datalist is reminiscent of a select box, but allows the user to enter their own text if they don’t want to choose one of the pre-defined options. input type=range is rendered as a slider, while input type=date pops up a date picker, all natively in the browser with no JavaScript required at all. Currently, support is most complete in an experimental implementation in Opera and a number of the new attributes in Webkit-based browsers. But don’t let that stop you! The clever thing about the specification of the new Web Forms is that all the new input types are attributes (rather than elements). input defaults to input type=text, so if a browser doesn’t understand a new HTML5 type, it gracefully degrades to a plain text input. So where does that leave validation in those browsers that don’t support Web Forms? The answer is that you don’t retire your pre-existing JavaScript validation just yet, but you leave it as a fallback after doing some feature detection. To detect whether (say) input type=email is supported, you make a new input type=email with JavaScript but don’t add it to the page. Then, you interrogate your new element to find out what its type attribute is. If it’s reported back as “email”, then the browser supports the new feature, so let it do its work and don’t bring in any JavaScript validation. If it’s reported back as “text”, it’s fallen back to the default, indicating that it’s not supported, so your code should branch to your old validation routines. Alternatively, use the small (7K) Modernizr library which will do this work for you and give you JavaScript booleans like Modernizr.inputtypes[email] set to true or false. So what does this buy you? Well, first and foremost, you’re future-proofing your code for that time when all browsers support these hugely useful additions to forms. Secondly, you buy a usability and accessibility win. Although it’s tempting to style the stuffing out of your form fields (which can, incidentally, lead to madness), whatever your branding people say, it’s better to leave forms as close to the browser defaults as possible. A browser’s slider and date pickers will be the same across different sites, making it much more comprehensible to users. And, by using native controls rather than faking sliders and date pickers with JavaScript, your forms are much more likely to be accessible to users of assistive technology. HTML5 DOCTYPE You can use the new DOCTYPE !doctype html now and – hey presto – you’re writing HTML5, as it’s pretty much a superset of HTML4. There are some useful advantages to doing this. The first is that the HTML5 validator (I use http://html5.validator.nu) also validates ARIA information, whereas the HTML4 validator doesn’t, as ARIA is a new spec developed after HTML4. (Actually, it’s more accurate to say that it doesn’t validate your ARIA attributes, but it doesn’t automatically report them as an error.) Another advantage is that HTML5 allows tabindex as a global attribute (that is, on any element). Although originally designed as an accessibility bolt-on, I ordinarily advise you don’t use it; a well-structured page should provide a logical tab order through links and form fields already. However, tabindex="-1" is a legal value in HTML5 as it allows for the element to be programmatically focussable by JavaScript. It’s also very useful for correcting a bug in Internet Explorer when used with a keyboard; in-page links go nowhere if the destination doesn’t have a proprietary property called hasLayout set or a tabindex of -1. So, whether it is the tool of Satan or yule of Santa, HTML5 is just around the corner. Some you can use now, and by the end of 2010 I predict you’ll be able to use a whole lot more as new browser versions are released. 2009 Bruce Lawson brucelawson 2009-12-05T00:00:00+00:00 https://24ways.org/2009/html5-tool-of-satan-or-yule-of-santa/ code
182 Breaking Out The Edges of The Browser HTML5 contains more than just the new entities for a more meaningful document, it also contains an arsenal of JavaScript APIs. So many in fact, that some APIs have outgrown the HTML5 spec’s backyard and have been sent away to grow up all on their own and been given the prestigious honour of being specs in their own right. So when I refer to (bendy finger quote) “HTML5”, I mean the HTML5 specification and a handful of other specifications that help us authors build web applications. Examples of those specs I would include in the umbrella term would be: geolocation, web storage, web databases, web sockets and web workers, to name a few. For all you guys and gals, on this special 2009 series of 24 ways, I’m just going to focus on data storage and offline applications: boldly taking your browser where no browser has gone before! Web Storage The Web Storage API is basically cookies on steroids, a unhealthy dosage of steroids. Cookies are always a pain to work with. First of all you have the problem of setting, changing and deleting them. Typically solved by Googling and blindly relying on PPK’s solution. If that wasn’t enough, there’s the 4Kb limit that some of you have hit when you really don’t want to. The Web Storage API gets around all of the hoops you have to jump through with cookies. Storage supports around 5Mb of data per domain (the spec’s recommendation, but it’s open to the browsers to implement anything they like) and splits in to two types of storage objects: sessionStorage – available to all pages on that domain while the window remains open localStorage – available on the domain until manually removed Support Ignoring beta browsers for our support list, below is a list of the major browsers and their support for the Web Storage API: Latest: Internet Explorer, Firefox, Safari (desktop & mobile/iPhone) Partial: Google Chrome (only supports localStorage) Not supported: Opera (as of 10.10) Usage Both sessionStorage and localStorage support the same interface for accessing their contents, so for these examples I’ll use localStorage. The storage interface includes the following methods: setItem(key, value) getItem(key) key(index) removeItem(key) clear() In the simple example below, we’ll use setItem and getItem to store and retrieve data: localStorage.setItem('name', 'Remy'); alert( localStorage.getItem('name') ); Using alert boxes can be a pretty lame way of debugging. Conveniently Safari (and Chrome) include database tab in their debugging tools (cmd+alt+i), so you can get a visual handle on the state of your data: Viewing localStorage As far as I know only Safari has this view on stored data natively in the browser. There may be a Firefox plugin (but I’ve not found it yet!) and IE… well that’s just IE. Even though we’ve used setItem and getItem, there’s also a few other ways you can set and access the data. In the example below, we’re accessing the stored value directly using an expando and equally, you can also set values this way: localStorage.name = "Remy"; alert( localStorage.name ); // shows "Remy" The Web Storage API also has a key method, which is zero based, and returns the key in which data has been stored. This should also be in the same order that you set the keys, for example: alert( localStorage.getItem(localStorage.key(0)) ); // shows "Remy" I mention the key() method because it’s not an unlikely name for a stored value. This can cause serious problems though. When selecting the names for your keys, you need to be sure you don’t take one of the method names that are already on the storage object, like key, clear, etc. As there are no warnings when you try to overwrite the methods, it means when you come to access the key() method, the call breaks as key is a string value and not a function. You can try this yourself by creating a new stored value using localStorage.key = "foo" and you’ll see that the Safari debugger breaks because it relies on the key() method to enumerate each of the stored values. Usage Notes Currently all browsers only support storing strings. This also means if you store a numeric, it will get converted to a string: localStorage.setItem('count', 31); alert(typeof localStorage.getItem('count')); // shows "string" This also means you can’t store more complicated objects natively with the storage objects. To get around this, you can use Douglas Crockford’s JSON parser (though Firefox 3.5 has JSON parsing support baked in to the browser – yay!) json2.js to convert the object to a stringified JSON object: var person = { name: 'Remy', height: 'short', location: 'Brighton, UK' }; localStorage.setItem('person', JSON.stringify(person)); alert( JSON.parse(localStorage.getItem('person')).name ); // shows "Remy" Alternatives There are a few solutions out there that provide storage solutions that detect the Web Storage API, and if it’s not available, fall back to different technologies (for instance, using a flash object to store data). One comprehensive version of this is Dojo’s storage library. I’m personally more of a fan of libraries that plug missing functionality under the same namespace, just as Crockford’s JSON parser does (above). For those interested it what that might look like, I’ve mocked together a simple implementation of sessionStorage. Note that it’s incomplete (because it’s missing the key method), and it could be refactored to not using the JSON stringify (but you would need to ensure that the values were properly and safely encoded): // requires json2.js for all browsers other than Firefox 3.5 if (!window.sessionStorage && JSON) { window.sessionStorage = (function () { // window.top.name ensures top level, and supports around 2Mb var data = window.top.name ? JSON.parse(window.top.name) : {}; return { setItem: function (key, value) { data[key] = value+""; // force to string window.top.name = JSON.stringify(data); }, removeItem: function (key) { delete data[key]; window.top.name = JSON.stringify(data); }, getItem: function (key) { return data[key] || null; }, clear: function () { data = {}; window.top.name = ''; } }; })(); } Now that we’ve cracked the cookie jar with our oversized Web Storage API, let’s have a look at how we take our applications offline entirely. Offline Applications Offline applications is (still) part of the HTML5 specification. It allows developers to build a web app and have it still function without an internet connection. The app is access via the same URL as it would be if the user were online, but the contents (or what the developer specifies) is served up to the browser from a local cache. From there it’s just an everyday stroll through open web technologies, i.e. you still have access to the Web Storage API and anything else you can do without a web connection. For this section, I’ll refer you to a prototype demo I wrote recently of a contrived Rubik’s cube (contrived because it doesn’t work and it only works in Safari because I’m using 3D transforms). Offline Rubik’s cube Support Support for offline applications is still fairly limited, but the possibilities of offline applications is pretty exciting, particularly as we’re seeing mobile support and support in applications such as Fluid (and I would expect other render engine wrapping apps). Support currently, is as follows: Latest: Safari (desktop & mobile/iPhone) Sort of: Firefox‡ Not supported: Internet Explorer, Opera, Google Chrome ‡ Firefox 3.5 was released to include offline support, but in fact has bugs where it doesn’t work properly (certainly on the Mac), Minefield (Firefox beta) has resolved the bug. Usage The status of the application’s cache can be tested from the window.applicationCache object. However, we’ll first look at how to enable your app for offline access. You need to create a manifest file, which will tell the browser what to cache, and then we point our web page to that cache: <!DOCTYPE html> <html manifest="remy.manifest"> <!-- continues ... --> For the manifest to be properly read by the browser, your server needs to serve the .manifest files as text/manifest by adding the following to your mime.types: text/cache-manifest manifest Next we need to populate our manifest file so the browser can read it: CACHE MANIFEST /demo/rubiks/index.html /demo/rubiks/style.css /demo/rubiks/jquery.min.js /demo/rubiks/rubiks.js # version 15 The first line of the manifest must read CACHE MANIFEST. Then subsequent lines tell the browser what to cache. The HTML5 spec recommends that you include the calling web page (in my case index.html), but it’s not required. If I didn’t include index.html, the browser would cache it as part of the offline resources. These resources are implicitly under the CACHE namespace (which you can specify any number of times if you want to). In addition, there are two further namespaces: NETWORK and FALLBACK. NETWORK is a whitelist namespace that tells the browser not to cache this resource and always try to request it through the network. FALLBACK tells the browser that whilst in offline mode, if the resource isn’t available, it should return the fallback resource. Finally, in my example I’ve included a comment with a version number. This is because once you include a manifest, the only way you can tell the browser to reload the resources is if the manifest contents changes. So I’ve included a version number in the manifest which I can change forcing the browser to reload all of the assets. How it works If you’re building an app that makes use of the offline cache, I would strongly recommend that you add the manifest last. The browser implementations are very new, so can sometimes get a bit tricky to debug since once the resources are cached, they really stick in the browser. These are the steps that happen during a request for an app with a manifest: Browser: sends request for your app.html Server: serves all associated resources with app.html – as normal Browser: notices that app.html has a manifest, it re-request the assets in the manifest Server: serves the requested manifest assets (again) Browser: window.applicationCache has a status of UPDATEREADY Browser: reloads Browser: only request manifest file (which doesn’t show on the net requests panel) Server: responds with 304 Not Modified on the manifest file Browser: serves all the cached resources locally What might also add confusion to this process, is that the way the browsers work (currently) is if there is a cache already in place, it will use this first over updated resources. So if your manifest has changed, the browser will have already loaded the offline cache, so the user will only see the updated on the next reload. This may seem a bit convoluted, but you can also trigger some of this manually through the applicationCache methods which can ease some of this pain. If you bind to the online event you can manually try to update the offline cache. If the cache has then updated, swap the updated resources in to the cache and the next time the app loads it will be up to date. You could also prompt your user to reload the app (which is just a refresh) if there’s an update available. For example (though this is just pseudo code): addEvent(applicationCache, 'updateready', function () { applicationCache.swapCache(); tellUserToRefresh(); }); addEvent(window, 'online', function () { applicationCache.update(); }); Breaking out of the Browser So that’s two different technologies that you can use to break out of the traditional browser/web page model and get your apps working in a more application-ny way. There’s loads more in the HTML5 and non-HTML5 APIs to play with, so take your Christmas break to check them out! 2009 Remy Sharp remysharp 2009-12-02T00:00:00+00:00 https://24ways.org/2009/breaking-out-the-edges-of-the-browser/ code
186 The Web Is Your CMS It is amazing what you can do these days with the services offered on the web. Flickr stores terabytes of photos for us and converts them automatically to all kind of sizes, finds people in them and even allows us to edit them online. YouTube does almost the same complete job with videos, LinkedIn allows us to maintain our CV, Delicious our bookmarks and so on. We don’t have to do these tasks ourselves any more, as all of these systems also come with ways to use the data in the form of Application Programming Interfaces, or APIs for short. APIs give us raw data when we send requests telling the system what we want to get back. The problem is that every API has a different idea of what is a simple way of accessing this data and in which format to give it back. Making it easier to access APIs What we need is a way to abstract the pains of different data formats and authentication formats away from the developer — and this is the purpose of the Yahoo Query Language, or YQL for short. Libraries like jQuery and YUI make it easy and reliable to use JavaScript in browsers (yes, even IE6) and YQL allows us to access web services and even the data embedded in web documents in a simple fashion – SQL style. Select * from the web and filter it the way I want YQL is a web service that takes a few inputs itself: A query that tells it what to get, update or access An output format – XML, JSON, JSON-P or JSON-P-X A callback function (if you defined JSON-P or JSON-P-X) You can try it out yourself – check out this link to get back Flickr photos for the search term ‘santa’*%20from%20flickr.photos.search%20where%20text%3D%22santa%22&format=xml in XML format. The YQL query for this is select * from flickr.photos.search where text="santa" The easiest way to take your first steps with YQL is to look at the console. There you get sample queries, access to all the data sources available to you and you can easily put together complex queries. In this article, however, let’s use PHP to put together a web page that pulls in Flickr photos, blog posts, Videos from YouTube and latest bookmarks from Delicious. Check out the demo and get the source code on GitHub. <?php /* YouTube RSS */ $query = 'select description from rss(5) where url="http://gdata.youtube.com/feeds/base/users/chrisheilmann/uploads?alt=rss&v=2&orderby=published&client=ytapi-youtube-profile";'; /* Flickr search by user id */ $query .= 'select farm,id,owner,secret,server,title from flickr.photos.search where user_id="11414938@N00";'; /* Delicious RSS */ $query .= 'select title,link from rss where url="http://feeds.delicious.com/v2/rss/codepo8?count=10";'; /* Blog RSS */ $query .= 'select title,link from rss where url="http://feeds.feedburner.com/wait-till-i/gwZf"'; /* The YQL web service root with JSON as the output */ $root = 'http://query.yahooapis.com/v1/public/yql?format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys'; /* Assemble the query */ $query = "select * from query.multi where queries='".$query."'"; $url = $root . '&q=' . urlencode($query); /* Do the curl call (access the data just like a browser would) */ $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url); curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false); $output = curl_exec($ch); curl_close($ch); $data = json_decode($output); $results = $data->query->results->results; /* YouTube output */ $youtube = '<ul id="youtube">'; foreach($results[0]->item as $r){ $cleanHTML = undoYouTubeMarkupCrimes($r->description); $youtube .= '<li>'.$cleanHTML.'</li>'; } $youtube .= '</ul>'; /* Flickr output */ $flickr = '<ul id="flickr">'; foreach($results[1]->photo as $r){ $flickr .= '<li>'. '<a href="http://www.flickr.com/photos/codepo8/'.$r->id.'/">'. '<img src="http://farm' .$r->farm . '.static.flickr.com/'. $r->server . '/' . $r->id . '_' . $r->secret . '_s.jpg" alt="'.$r->title.'"></a></li>'; } $flickr .= '</ul>'; /* Delicious output */ $delicious = '<ul id="delicious">'; foreach($results[2]->item as $r){ $delicious .= '<li><a href="'.$r->link.'">'.$r->title.'</a></li>'; } $delicious .= '</ul>'; /* Blog output */ $blog = '<ul id="blog">'; foreach($results[3]->item as $r){ $blog .= '<li><a href="'.$r->link.'">'.$r->title.'</a></li>'; } $blog .= '</ul>'; function undoYouTubeMarkupCrimes($str){ $cleaner = preg_replace('/555px/','100%',$str); $cleaner = preg_replace('/width="[^"]+"/','',$cleaner); $cleaner = preg_replace('/<tbody>/','<colgroup><col width="20%"><col width="50%"><col width="30%"></colgroup><tbody>',$cleaner); return $cleaner; } ?> What we are doing here is create a few different YQL statements and queue them together with the query.multi table. Each of these can be run inside YQL itself. Check out the YouTube, Flickr, Delicious and Blog example in the console if you don’t believe me. The benefit of using this table is that we don’t make individual requests for each query but we get all the data in one single request – which means a much better performing solution as the YQL server farm is faster on the web than our servers. We point the query to the YQL web service end point and get the resulting data using cURL. All that we need to do then is to convert the returned data to HTML lists that can be printed out inside an HTML template. Mixing, matching and using HTML as a data source This was a simple example of what YQL can do for you. Where it gets really powerful however is by mixing and matching different APIs. YQL is also a good tool to get information from HTML documents. By using the html table you can load the content of an HTML document (which gets fixed automatically by HTMLTidy) and use XPATH to filter down results to what you need. Take the following example which takes headlines from the news.bbc.co.uk homepage and runs the results through Yahoo’s Term Extractor API to give you a list of currently hot topics. select * from search.termextract where context in ( select content from html where url="http://news.bbc.co.uk" and xpath="//table[@width=800]//a" ) Try it out in the console or see the results here. In English, this means: Go to http://news.bbc.co.uk and get me the HTML Run it through HTML Tidy to clean it up. Get me only the links inside the table with an attribute of width and the value 800 Get only the content of the link and for each of the links Take the content and send it as context to the Yahoo Term Extractor API If we choose JSON-P as the output format we can use the outcome directly in JavaScript (see this demo or see its source): <ul id="hottopics"></ul> <script type="text/javascript"> function hottopics(o){ var res = o.query.results.Result, all = res.length, topics = {}, out = [], html = '', i=0; /* create hash from topics to prevent repetition */ for(i=0;i<all;i++){ topics[res[i]] = res[i]; }; for(i in topics){ out.push(i); }; html = '<li>' + out.join('</li><li>') + '</li>'; document.getElementById('hottopics').innerHTML = html; }; </script> <script type="text/javascript" src="http://query.yahooapis.com/v1/public/yql?q=select%20content%20from%20search.termextract%20where %20context%20in%20(select%20content%20from%20html%20where%20url%3D%22http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2Ftable%5B%40width%3D800%5D%2F%2Fa%22)&format=json&callback=hottopics"></script> Using JSON, we can also use PHP which means the demo works for everybody – not only those with JavaScript enabled (see this demo or see its source): <ul id="hottopics"><li> <?php $url = 'http://query.yahooapis.com/v1/public/yql?q=select%20content'. '%20from%20search.termextract%20where%20context%20in'. '%20(select%20content%20from%20html%20where%20url%3D%22'. 'http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2F'. 'table%5B%40width%3D800%5D%2F%2Fa%22)&format=json'; $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url); curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false); $output = curl_exec($ch); curl_close($ch); $data = json_decode($output); $topics = array_unique($data->query->results->Result); echo join('</li><li>',$topics); ?> </li></ul> Summary This article could only scratch the surface of YQL. You have not only read access to the web but you can also write to web services. For example you can update Twitter, post to your WordPress blog or shorten a URL with bit.ly. Using Open Tables you can add any web service to the YQL interface and you can even run server-side JavaScript which is for example useful to return Flickr photos as HTML or get the HTML content from a document that needs POST data. The web of data is already here, and using YQL you don’t have to be a web services expert to use it and be part of it. 2009 Christian Heilmann chrisheilmann 2009-12-17T00:00:00+00:00 https://24ways.org/2009/the-web-is-your-cms/ code
188 Don't Lose Your :focus For many web designers, accessibility conjures up images of blind users with screenreaders, and the difficulties in making sites accessible to this particular audience. Of course, accessibility covers a wide range of situations that go beyond the extreme example of screenreader users. And while it’s true that making a complex site accessible can often be a daunting prospect, there are also many small things that don’t take anything more than a bit of judicious planning, are very easy to test (without having to buy expensive assistive technology), and can make all the difference to certain user groups. In this short article we’ll focus on keyboard accessibility and how careless use of CSS can potentially make your sites completely unusable. Keyboard Access Users who for whatever reason can’t use a mouse will employ a keyboard (or keyboard-like custom interface) to navigate around web pages. By default, they will use TAB and SHIFT + TAB to move from one focusable element (links, form controls and area) of a page to the next. Note: in OS X, you’ll first need to turn on full keyboard access under System Preferences > Keyboard and Mouse > Keyboard Shortcuts. Safari under Windows needs to have the option Press Tab to highlight each item on a webpage in Preferences > Advanced enabled. Opera is the odd one out, as it has a variety of keyboard navigation options – the most relevant here being spatial navigation via Shift+Down, Shift+Up, Shift+Left, and Shift+Right). But I Don’t Like Your Dotted Lines… To show users where they are within a page, browsers place an outline around the element that currently has focus. The “problem” with these default outlines is that some browsers (Internet Explorer and Firefox) also display them when a user clicks on a focusable element with the mouse. Particularly on sites that make extensive use of image replacement on links with “off left” techniques this can create very unsightly outlines that stretch from the replaced element all the way to the left edge of the browser. Outline bleeding off to the left (image-replacement example from carsonified.com) There is a trivial workaround to prevent outlines from “spilling over” by adding a simple overflow:hidden, which keeps the outline in check around the clickable portion of the image-replaced element itself. Outline tamed with overflow:hidden But for many designers, even this is not enough. As a final solution, many actively suppress outlines altogether in their stylesheets. Controversially, even Eric Meyer’s popular reset.css – an otherwise excellent set of styles that levels the playing field of varying browser defaults – suppresses outlines. html, body, div, span, applet, object, iframe ... { ... outline: 0; ... } /* remember to define focus styles! */ :focus { outline: 0; } Yes, in his explanation (and in the CSS itself) Eric does remind designers to define relevant styles for :focus… but judging by the number of sites that seem to ignore this (and often remove the related comment from the stylesheet altogether), the message doesn’t seem to have sunk in. Anyway… hurrah! No more unsightly dotted lines on our lovely design. But what about keyboard users? Although technically they can still TAB from one element to the next, they now get no default cue as to where they are within the page (one notable exception here is Opera, where the outline is displayed regardless of stylesheets)… and if they’re Safari users, they won’t even get an indication of a link’s target in the status bar, like they would if they hovered over it with the mouse. Only Suppress outline For Mouse Users Is there a way to allow users navigating with the keyboard to retain the standard outline behaviour they’ve come to expect from their browser, while also ensuring that it doesn’t show display for mouse users? Testing some convoluted style combinations After playing with various approaches (see Better CSS outline suppression for more details), the most elegant solution also seemed to be the simplest: don’t remove the outline on :focus, do it on :active instead – after all, :active is the dynamic pseudo-class that deals explicitly with the styles that should be applied when a focusable element is clicked or otherwise activated. a:active { outline: none; } The only minor issues with this method: if a user activates a link and then uses the browser’s back button, the outline becomes visible. Oh, and old versions of Internet Explorer notoriously get confused by the exact meaning of :focus, :hover and :active, so this method fails in IE6 and below. Personally, I can live with both of these. Note: at the last minute before submitting this article, I discovered a fatal flaw in my test. It appears that outline still manages to appear in the time between activating a link and the link target loading (which in hindsight is logical – after activation, the link does indeed receive focus). As my test page only used in-page links, this issue never came up before. The slightly less elegant solution is to also suppress the outline on :hover. a:hover, a:active { outline: none; } In Conclusion Of course, many web designers may argue that they know what’s best, even for their keyboard-using audience. Maybe they’ve removed the default outline and are instead providing some carefully designed :focus styles. If they know for sure that these custom styles are indeed a reliable alternative for their users, more power to them… but, at the risk of sounding like Jakob “blue underlined links” Nielsen, I’d still argue that sometimes the default browser behaviours are best left alone. Complemented, yes (and if you’re already defining some fancy styles for :hover, by all means feel free to also make them display on :focus)… but not suppressed. 2009 Patrick Lauke patricklauke 2009-12-09T00:00:00+00:00 https://24ways.org/2009/dont-lose-your-focus/ code
192 Cleaner Code with CSS3 Selectors The parts of CSS3 that seem to grab the most column inches on blogs and in articles are the shiny bits. Rounded corners, text shadow and new ways to achieve CSS layouts are all exciting and bring with them all kinds of possibilities for web design. However what really gets me, as a developer, excited is a bit more mundane. In this article I’m going to take a look at some of the ways our front and back-end code will be simplified by CSS3, by looking at the ways we achieve certain visual effects now in comparison to how we will achieve them in a glorious, CSS3-supported future. I’m also going to demonstrate how we can use these selectors now with a little help from JavaScript – which can work out very useful if you find yourself in a situation where you can’t change markup that is being output by some server-side code. The wonder of nth-child So why does nth-child get me so excited? Here is a really common situation, the designer would like the tables in the application to look like this: Setting every other table row to a different colour is a common way to enhance readability of long rows. The tried and tested way to implement this is by adding a class to every other row. If you are writing the markup for your table by hand this is a bit of a nuisance, and if you stick a row in the middle you have to change the rows the class is applied to. If your markup is generated by your content management system then you need to get the server-side code to add that class – if you have access to that code. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Striping every other row - using classes</title> <style type="text/css"> body { padding: 40px; margin: 0; font: 0.9em Arial, Helvetica, sans-serif; } table { border-collapse: collapse; border: 1px solid #124412; width: 600px; } th { border: 1px solid #124412; background-color: #334f33; color: #fff; padding: 0.4em; text-align: left; } td { padding: 0.4em; } tr.odd td { background-color: #86B486; } </style> </head> <body> <table> <tr> <th>Name</th> <th>Cards sent</th> <th>Cards received</th> <th>Cards written but not sent</th> </tr> <tr> <td>Ann</td> <td>40</td> <td>28</td> <td>4</td> </tr> <tr class="odd"> <td>Joe</td> <td>2</td> <td>27</td> <td>29</td> </tr> <tr> <td>Paul</td> <td>5</td> <td>35</td> <td>2</td> </tr> <tr class="odd"> <td>Louise</td> <td>65</td> <td>65</td> <td>0</td> </tr> </table> </body> </html> View Example 1 This situation is something I deal with on almost every project, and apart from being an extra thing to do, it just isn’t ideal having the server-side code squirt classes into the markup for purely presentational reasons. This is where the nth-child pseudo-class selector comes in. The server-side code creates a valid HTML table for the data, and the CSS then selects the odd rows with the following selector: tr:nth-child(odd) td { background-color: #86B486; } View Example 2 The odd and even keywords are very handy in this situation – however you can also use a multiplier here. 2n would be equivalent to the keyword ‘odd’ 3n would select every third row and so on. Browser support Sadly, nth-child has pretty poor browser support. It is not supported in Internet Explorer 8 and has somewhat buggy support in some other browsers. Firefox 3.5 does have support. In some situations however, you might want to consider using JavaScript to add this support to browsers that don’t have it. This can be very useful if you are dealing with a Content Management System where you have no ability to change the server-side code to add classes into the markup. I’m going to use jQuery in these examples as it is very simple to use the same CSS selector used in the CSS to target elements with jQuery – however you could use any library or write your own function to do the same job. In the CSS I have added the original class selector to the nth-child selector: tr:nth-child(odd) td, tr.odd td { background-color: #86B486; } Then I am adding some jQuery to add a class to the markup once the document has loaded – using the very same nth-child selector that works for browsers that support it. <script src="http://code.jquery.com/jquery-latest.js"></script> <script> $(document).ready(function(){ $("tr:nth-child(odd)").addClass("odd"); }); </script> View Example 3 We could just add a background colour to the element using jQuery, however I prefer not to mix that information into the JavaScript as if we change the colour on our table rows I would need to remember to change it both in the CSS and in the JavaScript. Doing something different with the last element So here’s another thing that we often deal with. You have a list of items all floated left with a right hand margin on each element constrained within a fixed width layout. If each element has the right margin applied the margin on the final element will cause the set to become too wide forcing that last item down to the next row as shown in the below example where I have used a grey border to indicate the fixed width. Currently we have two ways to deal with this. We can put a negative right margin on the list, the same width as the space between the elements. This means that the extra margin on the final element fills that space and the item doesn’t drop down. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>The last item is different</title> <style type="text/css"> body { padding: 40px; margin: 0; font: 0.9em Arial, Helvetica, sans-serif; } div#wrapper { width: 740px; float: left; border: 5px solid #ccc; } ul.gallery { margin: 0 -10px 0 0; padding: 0; list-style: none; } ul.gallery li { float: left; width: 240px; margin: 0 10px 10px 0; } </style> </head> <body> <div id="wrapper"> <ul class="gallery"> <li><img src="xmas1.jpg" alt="baubles" /></li> <li><img src="xmas2.jpg" alt="star" /></li> <li><img src="xmas3.jpg" alt="wreath" /></li> </ul> </div> </body> </html> View Example 4 The other solution will be to put a class on the final element and in the CSS remove the margin for this class. ul.gallery li.last { margin-right: 0; } This second solution may not be easy if the content is generated from server-side code that you don’t have access to change. It could all be so different. In CSS3 we have marvellously common-sense selectors such as last-child, meaning that we can simply add rules for the last list item. ul.gallery li:last-child { margin-right: 0; } View Example 5 This removed the margin on the li which is the last-child of the ul with a class of gallery. No messing about sticking classes on the last item, or pushing the width of the item out wit a negative margin. If this list of items repeated ad infinitum then you could also use nth-child for this task. Creating a rule that makes every 3rd element margin-less. ul.gallery li:nth-child(3n) { margin-right: 0; } View Example 6 A similar example is where the designer has added borders to the bottom of each element – but the last item does not have a border or is in some other way different. Again, only a class added to the last element will save you here if you cannot rely on using the last-child selector. Browser support for last-child The situation for last-child is similar to that of nth-child, in that there is no support in Internet Explorer 8. However, once again it is very simple to replicate the functionality using jQuery. Adding our .last class to the last list item. $("ul.gallery li:last-child").addClass("last"); We could also use the nth-child selector to add the .last class to every third list item. $("ul.gallery li:nth-child(3n)").addClass("last"); View Example 7 Fun with forms Styling forms can be a bit of a trial, made difficult by the fact that any CSS applied to the input element will effect text fields, submit buttons, checkboxes and radio buttons. As developers we are left adding classes to our form fields to differentiate them. In most builds all of my text fields have a simple class of text whereas I wouldn’t dream of adding a class of para to every paragraph element in a document. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Syling form fields</title> <style type="text/css"> body { padding: 40px; margin: 0; font: 0.9em Arial, Helvetica, sans-serif; } form div { clear: left; padding: 0 0 0.8em 0; } form label { float: left; width: 120px; } form .text, form textarea { border:1px solid #333; padding: 0.2em; width: 400px; } form .button { border: 1px solid #333; background-color: #eee; color: #000; padding: 0.1em; } </style> </head> <body> <h1>Send your Christmas list to Santa</h1> <form method="post" action="" id="christmas-list"> <div><label for="fName">Name</label> <input type="text" name="fName" id="fName" class="text" /></div> <div><label for="fEmail">Email address</label> <input type="text" name="fEmail" id="fEmail" class="text" /></div> <div><label for="fList">Your list</label> <textarea name="fList" id="fList" rows="10" cols="30"></textarea></div> <div><input type="submit" name="btnSubmit" id="btnSubmit" value="Submit" class="button" ></div> </form> </body> </html> View Example 8 Attribute selectors provide a way of targeting elements by looking at the attributes of those elements. Unlike the other examples in this article which are CSS3 selectors, the attribute selector is actually a CSS2.1 selector – it just doesn’t get much use because of lack of support in Internet Explorer 6. Using attribute selectors we can write rules for text inputs and form buttons without needing to add any classes to the markup. For example after removing the text and button classes from my text and submit button input elements I can use the following rules to target them: form input[type="text"] { border: 1px solid #333; padding: 0.2em; width: 400px; } form input[type="submit"]{ border: 1px solid #333; background-color: #eee; color: #000; padding: 0.1em; } View Example 9 Another problem that I encounter with forms is where I am using CSS to position my labels and form elements by floating the labels. This works fine as long as I want all of my labels to be floated, however sometimes we get a set of radio buttons or a checkbox, and I don’t want the label field to be floated. As you can see in the below example the label for the checkbox is squashed up into the space used for the other labels, yet it makes more sense for the checkbox to display after the text. I could use a class on this label element however CSS3 lets me to target the label attribute directly by looking at the value of the for attribute. label[for="fOptIn"] { float: none; width: auto; } Being able to precisely target attributes in this way is incredibly useful, and once IE6 is no longer an issue this will really help to clean up our markup and save us from having to create all kinds of special cases when generating this markup on the server-side. Browser support The news for attribute selectors is actually pretty good with Internet Explorer 7+, Firefox 2+ and all other modern browsers all having support. As I have already mentioned this is a CSS2.1 selector and so we really should expect to be able to use it as we head into 2010! Internet Explorer 7 has slightly buggy support and will fail on the label example shown above however I discovered a workaround in the Sitepoint CSS reference comments. Adding the selector label[htmlFor="fOptIn"] to the correct selector will create a match for IE7. IE6 does not support these selector but, once again, you can use jQuery to plug the holes in IE6 support. The following jQuery will add the text and button classes to your fields and also add a checks class to the label for the checkbox, which you can use to remove the float and width for this element. $('form input[type="submit"]').addClass("button"); $('form input[type="text"]').addClass("text"); $('label[for="fOptIn"]').addClass("checks"); View Example 10 The selectors I’ve used in this article are easy to overlook as we do have ways to achieve these things currently. As developers – especially when we have frameworks and existing code that cope with these situations – it is easy to carry on as we always have done. I think that the time has come to start to clean up our front and backend code and replace our reliance on classes with these more advanced selectors. With the help of a little JavaScript almost all users will still get the full effect and, where we are dealing with purely visual effects, there is definitely a case to be made for not worrying about the very small percentage of people with old browsers and no JavaScript. They will still receive a readable website, it may just be missing some of the finesse offered to the modern browsing experience. 2009 Rachel Andrew rachelandrew 2009-12-20T00:00:00+00:00 https://24ways.org/2009/cleaner-code-with-css3-selectors/ code
193 Web Content Accessibility Guidelines—for People Who Haven't Read Them I’ve been a huge fan of the Web Content Accessibility Guidelines 2.0 since the World Wide Web Consortium (W3C) published them, nine years ago. I’ve found them practical and future-proof, and I’ve found that they can save a huge amount of time for designers and developers. You can apply them to anything that you can open in a browser. My favourite part is when I use the guidelines to make a website accessible, and then attend user-testing and see someone with a disability easily using that website. Today, the United Nations International Day of Persons with Disabilities, seems like a good time to re-read Laura Kalbag’s explanation of why we should bother with accessibility. That should motivate you to devour this article. If you haven’t read the Web Content Accessibility Guidelines 2.0, you might find them a bit off-putting at first. The editors needed to create a single standard that countries around the world could refer to in legislation, and so some of the language in the guidelines reads like legalese. The editors also needed to future-proof the guidelines, and so some terminology—such as “time-based media” and “programmatically determined”—can sound ambiguous. The guidelines can seem lengthy, too: printing the guidelines, the Understanding WCAG 2.0 document, and the Techniques for WCAG 2.0 document would take 1,200 printed pages. This festive season, let’s rip off that legalese and ambiguous terminology like wrapping paper, and see—in a single article—what gifts the Web Content Accessibility Guidelines 2.0 editors have bestowed upon us. Can your users perceive the information on your website? The first guideline has criteria that help you prevent your users from asking “What the **** is this thing here supposed to be?” 1.1.1 Text is the most accessible format for information. Screen readers—such as the “VoiceOver” setting on your iPhone or the “TalkBack” app on your Android phone—understand text better than any other format. The same applies for other assistive technology, such as translation apps and Braille displays. So, if you have anything on your webpage that’s not text, you must add some text that gives your user the same information. You probably know how to do this already; for example: for images in webpages, put some alternative text in an alt attribute to tell your user what the image conveys to the user; for photos in tweets, add a description to make the images accessible; for Instagram posts, write a caption that conveys the photo’s information. The alternative text should allow the user to get the same information as someone who can see the image. For websites that have too many images for someone to add alternative text to, consider how machine learning and Dynamically Generated Alt Text might—might—be appropriate. You can probably think of a few exceptions where providing text to describe an image might not make sense. Remember I described these guidelines as “practical”? They cover all those exceptions: User interface controls such as buttons and text inputs must have names or labels to tell your user what they do. If your webpage has video or audio (more about these later on!), you must—at least—have text to tell the user what they are. Maybe your webpage has a test where your user has to answer a question about an image or some audio, and alternative text would give away the answer. In that case, just describe the test in text so your users know what it is. If your webpage features a work of art, tell your user the experience it evokes. If you have to include a Captcha on your webpage—and please avoid Captchas if at all possible, because some users cannot get past them—you must include text to tell your user what it is, and make sure that it doesn’t rely on only one sense, such as vision. If you’ve included something just as decoration, you must make sure that your user’s assistive technology can ignore it. Again, you probably know how to do this. For example, you could use CSS instead of HTML to include decorative images, or you could add an empty alt attribute to the img element. (Please avoid that recent trend where developers add empty alt attributes to all images in a webpage just to make the HTML validate. You’re better than that.) (Notice that the guidelines allow you to choose how to conform to them, with whatever technology you choose. To make your website conform to a guideline, you can either choose one of the techniques for WCAG 2.0 for that guideline or come up with your own. Choosing a tried-and-tested technique usually saves time!) 1.2.1 If your website includes a podcast episode, speech, lecture, or any other recorded audio without video, you must include a transcription or some other text to give your user the same information. In a lot of cases, you might find this easier than you expect: professional transcription services can prove relatively inexpensive and fast, and sometimes a speaker or lecturer can provide the speech or lecture notes that they read out word-for-word. Just make sure that all your users can get the same information and the same results, whether they can hear the audio or not. For example, David Smith and Marco Arment always publish episode transcripts for their Under the Radar podcast. Similarly, if your website includes recorded video without audio—such as an animation or a promotional video—you must either use text to detail what happens in the video or include an audio version. Again, this might work out easier then you perhaps fear: for example, you could check to see whether the animation started life as a list of instructions, or whether the promotional video conveys the same information as the “About Us” webpage. You want to make sure that all your users can get the same information and the same results, whether they can see that video or not. 1.2.2 If your website includes recorded videos with audio, you must add captions to those videos for users who can’t hear the audio. Professional transcription services can provide you with time-stamped text in caption formats that YouTube supports, such as .srt and .sbv. You can upload those to YouTube, so captions appear on your videos there. YouTube can auto-generate captions, but the quality varies from impressively accurate to comically inaccurate. If you have a text version of what the people in the video said—such as the speech that a politician read or the bedtime story that an actor read—you can create a transcript file in .txt format, without timestamps. YouTube then creates captions for your video by synchronising that text to the audio in the video. If you host your own videos, you can ask a professional transcription service to give you .vtt files that you can add to a video element’s track element—or you can handcraft your own. (A quick aside: if your website has more videos than you can caption in a reasonable amount of time, prioritise the most popular videos, the most important videos, and the videos most relevant to people with disabilities. Then make sure your users know how to ask you to caption other videos as they encounter them.) 1.2.3 If your website has recorded videos that have audio, you must add an “audio description” narration to the video to describe important visual details, or add text to the webpage to detail what happens in the video for users who cannot see the videos. (I like to add audio files from videos to my Huffduffer account so that I can listen to them while commuting.) Maybe your home page has a video where someone says, “I’d like to explain our new TPS reports” while “Bill Lumbergh, division Vice President of Initech” appears on the bottom of the screen. In that case, you should add an audio description to the video that announces “Bill Lumbergh, division Vice President of Initech”, just before Bill starts speaking. As always, you can make life easier for yourself by considering all of your users, before the event: in this example, you could ask the speaker to begin by saying, “I’m Bill Lumbergh, division Vice President of Initech, and I’d like to explain our new TPS reports”—so you won’t need to spend time adding an audio description afterwards. 1.2.4 If your website has live videos that have some audio, you should get a stenographer to provide real-time captions that you can include with the video. I’ll be honest: this can prove tricky nowadays. The Web Content Accessibility Guidelines 2.0 predate YouTube Live, Instagram live Stories, Periscope, and other such services. If your organisation creates a lot of live videos, you might not have enough resources to provide real-time captions for each one. In that case, if you know the contents of the audio beforehand, publish the contents during the live video—or failing that, publish a transcription as soon as possible. 1.2.5 Remember what I said about the recorded videos that have audio? If you can choose to either add an audio description or add text to the webpage to detail what happens in the video, you should go with the audio description. 1.2.6 If your website has recorded videos that include audio information, you could provide a sign language version of the audio information; some people understand sign language better than written language. (You don’t need to caption a video of a sign language version of audio information.) 1.2.7 If your website has recorded videos that have audio, and you need to add an audio description, but the audio doesn’t have enough pauses for you to add an “audio description” narration, you could provide a separate version of that video where you have added pauses to fit the audio description into. 1.2.8 Let’s go back to the recorded videos that have audio once more! You could add text to the webpage to detail what happens in the video, so that people who can neither read captions nor hear dialogue and audio description can use braille displays to understand your video. 1.2.9 If your website has live audio, you could get a stenographer to provide real-time captions. Again, if you know the contents of the audio beforehand, publish the contents during the live audio or publish a transcription as soon as possible. (Congratulations on making it this far! I know that seems like a lot to remember, but keep in mind that we’ve covered a complex area: helping your users to understand multimedia information that they can’t see and/or hear. Grab a mince pie to celebrate, and let’s keep going.) 1.3.1 You must mark up your website’s content so that your user’s browser, and any assistive technology they use, can understand the hierarchy of the information and how each piece of information relates to the rest. Once again, you probably know how to do this: use the most appropriate HTML element for each piece of information. Mark up headings, lists, buttons, radio buttons, checkboxes, and links with the most appropriate HTML element. If you’re looking for something to do to keep you busy this Christmas, scroll through the list of the elements of HTML. Do you notice any elements that you didn’t know, or that you’ve never used? Do you notice any elements that you could use on your current projects, to mark up the content more accurately? Also, revise HTML table advanced features and accessibility, how to structure an HTML form, and how to use the native form widgets—you might be surprised at how much you can do with just HTML! Once you’ve mastered those, you can make your website much more usable for your all of your users. 1.3.2 If your webpage includes information that your user has to read in a certain order, you must make sure that their browser and assistive technology can present the information in that order. Don’t rely on CSS or whitespace to create that order visually. Check that the order of the information makes sense when CSS and whitespace aren’t formatting it. Also, try using the Tab key to move the focus through the links and form widgets on your webpage. Does the focus go where you expect it to? Keep this in mind when using order in CSS Grid or Flexbox. 1.3.3 You must not presume that your users can identify sensory characteristics of things on your webpage. Some users can’t tell what you’ve positioned where on the screen. For example, instead of asking your users to “Choose one of the options on the left”, you could ask them to “Choose one of our new products” and link to that section of the webpage. 1.4.1 You must not rely on colour as the only way to convey something to your users. Some of your users can’t see, and some of your users can’t distinguish between colours. For example, if your webpage uses green to highlight the products that your shop has in stock, you could add some text to identify those products, or you could group them under a sub-heading. 1.4.2 If your webpage automatically plays a sound for more than 3 seconds, you must make sure your users can stop the sound or change its volume. Don’t rely on your user turning down the volume on their computer; some users need to hear the screen reader on their computer, and some users just want to keep listening to whatever they were listening before your webpage interrupted them! 1.4.3 You should make sure that your text contrasts enough with its background, so that your users can read it. Bookmark Lea Verou’s Contrast Ratio calculator now. You can enter the text colour and background colour as named colours, or as RGB, RGBa, HSL, or HSLa values. You should make sure that: normal text that set at 24px or larger has a ratio of at least 3:1; bold text that set at 18.75px or larger has a ratio of at least 3:1; all other text has a ratio of at least 4½:1. You don’t have to do this for disabled form controls, decorative stuff, or logos—but you could! 1.4.4 You should make sure your users can resize the text on your website up to 200% without using their assistive technology—and still access all your content and functionality. You don’t have to do this for subtitles or images of text. 1.4.5 You should avoid using images of text and just use text instead. In 1998, Jeffrey Veen’s first Hot Design Tip said, “Text is text. Graphics are graphics. Don’t confuse them.” Now that you can apply powerful CSS text-styling properties, use CSS Grid to precisely position text, and choose from thousands of web fonts (Jeffrey co-founded Typekit to help with this), you pretty much never need to use images of text. The guidelines say you can use images of text if you let your users specify the font, size, colour, and background of the text in the image of text—but I’ve never seen that on a real website. Also, this doesn’t apply to logos. 1.4.6 Let’s go back to colour contrast for a second. You could make your text contrast even more with its background, so that even more of your users can read it. To do that, use Lea Verou’s Contrast Ratio calculator to make sure that: normal text that is 24px or larger has a ratio of at least 4½:1; bold text that 18.75px or larger has a ratio of at least 4½:1; all other text has a ratio of at least 7:1. 1.4.7 If your website has recorded speech, you could make sure there are no background sounds, or that your users can turn off any background sounds. If that’s not possible, you could make sure that any background sounds that last longer than a couple of seconds are at least four times quieter than the speech. This doesn’t apply to audio Captchas, audio logos, singing, or rapping. (Yes, these guidelines mention rapping!) 1.4.8 You could make sure that your users can reformat blocks of text on your website so they can read them better. To do this, make sure that your users can: specify the colours of the text and the background, and make the blocks of text less than 80-characters wide, and align text to the left (or right for right-to-left languages), and set the line height to 150%, and set the vertical distance between paragraphs to 1½ times the line height of the text, and resize the text (without using their assistive technology) up to 200% and still not have to scroll horizontally to read it. By the way, when you specify a colour for text, always specify a colour for its background too. Don’t rely on default background colours! 1.4.9 Let’s return to images of text for a second. You could make sure that you use them only for decoration and logos. Can users operate the controls and links on your website? The second guideline has criteria that help you prevent your users from asking, “How the **** does this thing work?” 2.1.1 You must make sure that you users can carry out all of your website’s activities with just their keyboard, without time limits for pressing keys. (This doesn’t apply to drawing or anything else that requires a pointing device such as a mouse.) Again, if you use the most appropriate HTML element for each piece of information and for each form element, this should prove easy. 2.1.2 You must make sure that when the user uses the keyboard to focus on some part of your website, they can then move the focus to some other part of your webpage without needing to use a mouse or touch the screen. If your website needs them to do something complex before they can move the focus elsewhere, explain that to your user. These “keyboard traps” have become rare, but beware of forms that move focus from one text box to another as soon as they receive the correct number of characters. 2.1.3 Let’s revisit making sure that you users can carry out all of your website’s activities with just their keyboard, without time limits for pressing keys. You could make sure that your user can do absolutely everything on your website with just the keyboard. 2.2.1 Sometimes people need more time than you might expect to complete a task on your website. If any part of your website imposes a time limit on a task, you must do at least one of these: let your users turn off the time limit before they encounter it; or let your users increase the time limit to at least 10 times the default time limit before they encounter it; or warn your users before the time limit expires and give them at least 20 seconds to extend it, and let them extend it at least 10 times. Remember: these guidelines are practical. They allow you to enforce time limits for real-time events such as auctions and ticket sales, where increasing or extending time limits wouldn’t make sense. Also, the guidelines allow you to enforce a maximum time limit of 20 hours. The editors chose 20 hours because people need to go to sleep at some stage. See? Practical! 2.2.2 In my experience, this criterion remains the least well-known—even though some users can only use websites that conform to it. If your website presents content alongside other content that can distract users by automatically moving, blinking, scrolling, or updating, you must make sure that your users can: pause, stop, or hide the other content if it’s not essential and lasts more than 5 seconds; and pause, stop, hide, or control the frequency of the other content if it automatically updates. It’s OK if your users miss live information such as stock price updates or football scores; you can’t do anything about that! Also, this doesn’t apply to animations such as progress bars that you put on a website to let all users know that the webpage isn’t frozen. (If this one sounds complex, just add a pause button to anything that might distract your users.) 2.2.3 Let’s go back to time limits on tasks on your website. You could make your website even easier to use by removing all time limits except those on real-time events such as auctions and ticket sales. That would mean your user wouldn’t need to interact with a timer at all. 2.2.4 You could let your users turn off all interruptions—server updates, promotions, and so on—apart from any emergency information. 2.2.5 This is possibly my favourite of these criteria! After your website logs your user out, you could make sure that when they log in again, they can continue from where they were without having lost any information. Do that, and you’ll be on everyone’s Nice List this Christmas. 2.3.1 You must make sure that nothing flashes more than three times a second on your website, unless you can make sure that the flashes remain below the acceptable general flash and red flash thresholds… 2.3.2 …or you could just make sure that nothing flashes more than three times per second on your website. This is usually an easier goal. 2.4.1 You must make sure that your users can jump past any blocks of content, such as navigation menus, that are repeated throughout your website. You know the drill here: using HTML’s sectioning elements such as header, nav, main, aside, and footer allows users with assistive technology to go straight to the content they need, and adding “Skip Navigation” links allows everyone to get to your main content faster. 2.4.2 You must add a proper title to describe each webpage’s topic. Your webpage won’t even validate without a title element, so make it a useful one. 2.4.3 If your users can focus on links and native form widgets, you must make sure that they can focus on elements in an order that makes sense. 2.4.4 You must make sure that your users can understand the purpose of a link when they read: the text of the link; or the text of the paragraph, list item, table cell, or table header for the cell that contains the link; or the heading above the link. You don’t have to do that for games and quizzes. 2.4.5 You should give your users multiple ways to find any webpage within a set of webpages. Add site-wide search and a site map and you’re done! This doesn’t apply for a webpage that is part of a series of actions (like a shopping cart and checkout flow) or to a webpage that is a result of a series of actions (like a webpage confirming that the user has bought what was in the shopping cart). 2.4.6 You should help your users to understand your content by providing: headings that describe the topics of you content; labels that describe the purpose of the native form widgets on the webpage. 2.4.7 You should make sure that users can see which element they have focussed on. Next time you use your website, try hitting the Tab key repeatedly. Does it visually highlight each item as it moves focus to it? If it doesn’t, search your CSS to see whether you’ve applied outline: 0; to all elements—that’s usually the culprit. Use the :focus pseudo-element to define how elements should appear when they have focus. 2.4.8 You could help your user to understand where the current webpage is located within your website. Add “breadcrumb navigation” and/or a site map and you’re done. 2.4.9 You could make links even easier to understand, by making sure that your users can understand the purpose of a link when they read the text of the link. Again, you don’t have to do that for games and quizzes. 2.4.10 You could use headings to organise your content by topic. Can users understand your content? The third guideline has criteria that help you prevent your users from asking, “What the **** does this mean?” 3.1.1 Let’s start this section with the criterion that possibly takes the least time to implement; you must make sure that the user’s browser can identify the main language that your webpage’s content is written in. For a webpage that has mainly English content, use <html lang="en">. 3.1.2 You must specify when content in another language appears in your webpage, like so: <q>I wish you a <span lang="fr">Joyeux Noël</span>.</q>. You don’t have to do this for proper names, technical terms, or words that you can’t identify a language for. You also don’t have to do it for words from a different language that people consider part of the language around those words; for example, <q>Come to our Christmas rendezvous!</q> is OK. 3.1.3 You could make sure that your users can find out the meaning of any unusual words or phrases, including idioms like “stocking filler” or “Bah! Humbug!” and jargon such as “VoiceOver” and “TalkBack”. Provide a glossary or link to a dictionary. 3.1.4 You could make sure that your users can find out the meaning of any abbreviation. For example, VoiceOver pronounces “Xmas” as “Smas” instead of “Christmas”. Using the abbr element and linking to a glossary can help. (Interestingly, VoiceOver pronounces “abbr” as “abbreviation”!) 3.1.5 Do your users need to be able to read better than a typically educated nine-year-old, to read your content (apart from proper names and titles)? If so, you could provide a version that doesn’t require that level of reading ability, or you could provide images, videos, or audio to explain your content. (You don’t have to add captions or audio description to those videos.) 3.1.6 You could make sure that your users can access the pronunciation of any word in your content if that word’s meaning depends on its pronunciation. For example, the word “close” could have one of two meanings, depending on pronunciation, in a phrase such as, “Ready for Christmas? Close now!” 3.2.1 Some users need to focus on elements to access information about them. You must make sure that focusing on an element doesn’t trigger any major changes, such as opening a new window, focusing on another element, or submitting a form. 3.2.2 Webpages are easier for users when the controls do what they’re supposed to do. Unless you have warned your users about it, you must make sure that changing the value of a control such as a text box, checkbox, or drop-down list doesn’t trigger any major changes, such as opening a new window, focusing on another element, or submitting a form. 3.2.3 To help your users to find the content they want on each webpage, you should put your navigation elements in the same place on each webpage. (This doesn’t apply when your user has changed their preferences or when they use assistive technology to change how your content appears.) 3.2.4 When a set of webpages includes things that have the same functionality on different webpages, you should name those things consistently. For example, don’t use the word “Search” for the search box on one webpage and “Find” for the search box on another webpage within that set of webpages. 3.2.5 Let’s go back to major changes, such as a new window opening, another element taking focus, or a form being submitted. You could make sure that they only happen when users deliberately make them happen, or when you have warned users about them first. For example, you could give the user a button for updating some content instead of automatically updating that content. Also, if a link will open in a new window, you could add the words “opens in new window” to the link text. 3.3.1 Users make mistakes when filling in forms. Your website must identify each mistake to your user, and must describe the mistake to your users in text so that the user can fix it. One way to identify mistakes reliably to your users is to set the aria-invalid attribute to true in the element that has a mistake. That makes sure that users with assistive technology will be alerted about the mistake. Of course, you can then use the [aria-invalid="true"] attribute selector in your CSS to visually highlight any such mistakes. Also, look into how certain attributes of the input element such as required, type, and list can help prevent and highlight mistakes. 3.3.2 You must include labels or instructions (and possibly examples) in your website’s forms, to help your users to avoid making mistakes. 3.3.3 When your user makes a mistake when filling in a form, your webpage should suggest ways to fix that mistake, if possible. This doesn’t apply in scenarios where those suggestions could affect the security of the content. 3.3.4 Whenever your user submits information that: has legal or financial consequences; or affects information that they have previously saved in your website; or is part of a test …you should make sure that they can: undo it; or correct any mistakes, after your webpage checks their information; or review, confirm, and correct the information before they finally submit it. 3.3.5 You could help prevent your users from making mistakes by providing obvious, specific help, such as examples, animations, spell-checking, or extra instructions. 3.3.6 Whenever your user submits any information, you could make sure that they can: undo it; or correct any mistakes, after your webpage checks their information; or review, confirm, and correct the information before they finally submit it. Have you made your website robust enough to work on your users’ browsers and assistive technologies? The fourth and final guideline has criteria that help you prevent your users from asking, “Why the **** doesn’t this work on my device?” 4.1.1 You must make sure that your website works as well as possible with current and future browsers and assistive technology. Prioritise complying with web standards instead of relying on the capabilities of currently popular devices and browsers. Web developers didn’t expect their users to be unwrapping the Wii U Browser five years ago—who knows what browsers and assistive technologies our users will be unwrapping in five years’ time? Avoid hacks, and use the W3C Markup Validation Service to make sure that your HTML has no errors. 4.1.2 If you develop your own user interface components, you must make their name, role, state, properties, and values available to your user’s browsers and assistive technologies. That should make them almost as accessible as standard HTML elements such as links, buttons, and checkboxes. “…and a partridge in a pear tree!” …as that very long Christmas song goes. We’ve covered a lot in this article—because your users have a lot of different levels of ability. Hopefully this has demystified the Web Content Accessibility Guidelines 2.0 for you. Hopefully you spotted a few situations that could arise for users on your website, and you now know how to tackle them. To start applying what we’ve covered, you might like to look at Sarah Horton and Whitney Quesenbery’s personas for Accessible UX. Discuss the personas, get into their heads, and think about which aspects of your website might cause problems for them. See if you can apply what we’ve covered today, to help users like them to do what they need to do on your website. How to know when your website is perfectly accessible for everyone LOL! There will never be a time when your website becomes perfectly accessible for everyone. Don’t aim for that. Instead, aim for regularly testing and making your website more accessible. Web Content Accessibility Guidelines (WCAG) 2.1 The W3C hope to release the Web Content Accessibility Guidelines (WCAG) 2.1 as a “recommendation” (that’s what the W3C call something that we should start using) by the middle of next year. Ten years may seem like a long time to move from version 2.0 to version 2.1, but consider the scale of the task: the editors have to update the guidelines to cover all the new ways that people interact with new technologies, while keeping the guidelines backwards-compatible. Keep an eye out for 2.1! You’ll go down in history One last point: I’ve met a surprising number of web designers and developers who do great work to make their websites more accessible without ever telling their users about it. Some of your potential customers have possibly tried and failed to use your website in the past. They probably won’t try again unless you let them know that things have improved. A quick Twitter search for your website’s name alongside phrases like “assistive technology”, “doesn’t work”, or “#fail” can let you find frustrated users—so you can tell them about how you’re making your website more accessible. Start making your websites work better for everyone—and please, let everyone know. 2017 Alan Dalton alandalton 2017-12-03T00:00:00+00:00 https://24ways.org/2017/wcag-for-people-who-havent-read-them/ code
201 Lint the Web Forward With Sonarwhal Years ago, when I was in a senior in college, much of my web development courses focused on two things: the basics like HTML and CSS (and boy, do I mean basic), and Adobe Flash. I spent many nights writing ActionScript 3.0 to build interactions for the websites that I would add to my portfolio. A few months after graduating, I built one website in Flash for a client, then never again. Flash was dying, and it became obsolete in my résumé and portfolio. That was my first lesson in the speed at which things change in technology, and what a daunting realization that was as a new graduate looking to enter the professional world. Now, seven years later, I work on the Microsoft Edge team where I help design and build a tool that would have lessened my early career anxieties: sonarwhal. Sonarwhal is a linting tool, built by and for the web community. The code is open source and lives under the JS Foundation. It helps web developers and designers like me keep up with the constant change in technology while simultaneously teaching how to code better websites. Introducing sonarwhal’s mascot Nellie Good web development is hard. It is more than HTML, CSS, and JavaScript: developers are expected to have a grasp of accessibility, performance, security, emerging standards, and more, all while refreshing this knowledge every few months as the web evolves. It’s a lot to keep track of.   Web development is hard Staying up-to-date on all this knowledge is one of the driving forces for developing this scanning tool. Whether you are just starting out, are a student, or you have over a decade of experience, the sonarwhal team wants to help you build better websites for all browsers. Currently sonarwhal checks for best practices in five categories: Accessibility, Interoperability, Performance, PWAs, and Security. Each check is called a “rule”. You can configure them and even create your own rules if you need to follow some specific guidelines for your project (e.g. validate analytics attributes, title format of pages, etc.). You can use sonarwhal in two ways: An online version, that provides a quick and easy way to scan any public website. A command line tool, if you want more control over the configuration, or want to integrate it into your development flow. The Online Scanner The online version offers a streamlined way to scan a website; just enter a URL and you will get a web page of scan results with a permalink that you can share and revisit at any time. The online version of sonarwal When my team works on a new rule, we spend the bulk of our time carefully researching each subject, finding sources, and documenting it rather than writing the rule’s code. Not only is it important that we get you the right results, but we also want you to understand why something is failing. Next to each failing rule you’ll find a link to its detailed documentation, explaining why you should care about it, what exactly we are testing, examples that pass and examples that don’t, and useful links to even more in-depth documentation if you are interested in the subject. We hope that between reading the documentation and continued use of sonarwhal, developers can stay on top of best practices. As devs continue to build sites and identify recurring issues that appear in their results, they will hopefully start to automatically include those missing elements or fix those pieces of code that are producing errors. This also isn’t a one-way communication: the documentation is not only available on the sonarwhal site, but also on GitHub for editing so you can help us make it even better! A results report The current configuration for the online scanner is very strict, so it might hurt your feelings (it did when I first tested it on my personal website). But you can configure sonarwhal to any level of strictness as well as customize the command line tool to your needs! Sonarwhal’s CLI  The CLI gives you full control of sonarwhal: what rules to use, tweaks to them, domains that are out of your control, and so on. You will need the latest node LTS (v8) or Stable (v9) and your favorite package manager, such as npm: npm install -g sonarwhal You can now run sonarwhal from anywhere via: sonarwhal https://example.com Using the CLI The configuration is done via a .sonarwhalrc file. When analyzing a site, if no file is available, you will be prompted to answer a series of questions: What connector do you want to use? Connectors are what sonarwhal uses to access a website and gather all the information about the requests, resources, HTML, etc. Currently it supports jsdom, Microsoft Edge, and Google Chrome. What formatter? This is how you want to see the results: summary, stylish, etc. Make sure to look at the full list. Some are concise for, perfect for a quick build assessment, while others are more verbose and informative. Do you want to use the recommended rules configuration? Rules are the things we are validating. Unless you’ve read the documentation and know what you are doing, first timers should probably use the recommended configuration. What browsers are you targeting? One of the best features of sonarwhal is that rules can adapt their feedback depending on your targeted browsers, suggesting to add or remove things. For example, the rule “Highest Document Mode” will tell you to add the “X-UA-Compatible” header if IE10 or lower is targeted or remove if the opposite is true. sonarwhal configuration generator questions Once you answer all these questions the scan will start and you will have a .sonarwhalrc file similar to the following: { "connector": { "name": "jsdom", "options": { "waitFor": 1000 } }, "formatters": "stylish", "rulesTimeout": 120000, "rules": { "apple-touch-icons": "error", "axe": "error", "content-type": "error", "disown-opener": "error", "highest-available-document-mode": "error", "validate-set-cookie-header": "warning", // ... } } You should see the scan initiate in the command line and within a few seconds the results should start to appear. Remember, the scan results will look different depending on which formatter you selected so try each one out to see which one you like best. sonarwhal results on my website and hurting my feelings 💔 Now that you have a list of errors, you can get to work improving the site! Note though, that when you scan your website, it scans all the resources on that page and if you’ve added something like analytics or fonts hosted elsewhere, you are unable to change those files. You can configure the CLI to ignore files from certain domains so that you are only getting results for files you are in control of. The documentation should give enough guidance on how to fix the errors, but if it’s insufficient, please help us and suggest edits or contribute back to it. This is a community effort and chances are someone else will have the same question as you. When I scanned both my websites, sonarwhal alerted me to not having an Apple Touch Icon. If I search on the web as opposed to using the sonarwhal documentation, the first top 3 results give me outdated information: I need to include many different icon sizes. I don’t need to include all the different size icons that target different devices. Declaring one icon sized 180px x 180px will provide a large enough icon for devices and it will scale down as appropriate for people on older devices. The information at the top of the search results isn’t always the correct answer to an issue and we don’t want you to have to search through outdated documentation. As sonarwhal’s capabilities expand, the goal is for it to be the one stop shop for helping preflight your website. The journey up until now and looking forward On the Microsoft Edge team, we’re passionate about empowering developers to build great websites. Every day we see so many sites come through our issue tracker. (Thanks for filing those bugs, they help us make Microsoft Edge better and better!) Some issues we see over and over are honest mistakes or outdated ‘best practices’ that could be avoided, so we built this tool to help everyone help make the web a better place. When we decided to create sonarwhal, we wanted to create a tool that would help developers write better and more up-to-date code for their websites. We want sonarwhal to be useful to anyone so, early on, we defined three guiding principles we’ve used along the way: Community Driven. We build for the community’s best interests. The web belongs to everyone and this project should too. Not only is it open source, we’ve also donated it to the JS Foundation and have an inclusive governance model that welcomes the collaboration of anyone, individual or company. User Centric. We want to put the user at the center, making sonarwhal configurable for your needs and easy to use no matter what your skill level is. Collaborative. We didn’t want to reinvent the wheel, so we collaborated with existing tools and services that help developers build for the web. Some examples are aXe, snyk.io, Cloudinary, etc. This is just the beginning and we still have lots to do. We’re hard at work on a backlog of exciting features for future releases, such as: New rules for a variety of areas like performance, accessibility, security, progressive web apps, and more. A plug-in for Visual Studio Code: we want sonarwhal to help you write better websites, and what better moment than when you are in your editor. Configuration options for the online service: as we fine tune the infrastructure, the rule configuration for our scanner is locked, but we look forward to adding CLI customization options here in the near future. This is a tool for the web community by the web community so if you are excited about sonarwhal, making a better web, and want to contribute, we have a few issues where you might be able to help. Also, don’t forget to check the rest of the sonarwhal GitHub organization. PRs are always welcome and appreciated! Let us know what you think about the scanner at @NarwhalNellie on Twitter and we hope you’ll help us lint the web forward! 2017 Stephanie Drescher stephaniedrescher 2017-12-02T00:00:00+00:00 https://24ways.org/2017/lint-the-web-forward-with-sonarwhal/ code
209 Feeding the Audio Graph In 2004, I was given an iPod. I count this as one of the most intuitive pieces of technology I’ve ever owned. It wasn’t because of the the snazzy (colour!) menus or circular touchpad. I loved how smoothly it fitted into my life. I could plug in my headphones and listen to music while I was walking around town. Then when I got home, I could plug it into an amplifier and carry on listening there. There was no faff. It didn’t matter if I could find my favourite mix tape, or if my WiFi was flakey - it was all just there. Nowadays, when I’m trying to pair my phone with some Bluetooth speakers, or can’t find my USB-to-headphone jack, or even access any music because I don’t have cellular reception; I really miss this simplicity. The Web Audio API I think the Web Audio API feels kind of like my iPod did. It’s different from most browser APIs - rather than throwing around data, or updating DOM elements - you plug together a graph of audio nodes, which the browser uses to generate, process, and play sounds. The thing I like about it is that you can totally plug it into whatever you want, and it’ll mostly just work. So, let’s get started. First of all we want an audio source. <audio src="night-owl.mp3" controls /> (Song - Night Owl by Broke For Free) This totally works. However, it’s not using the Web Audio API, so we can’t access or modify the sound it makes. To hook this up to our audio graph, we can use an AudioSourceNode. This captures the sound from the element, and lets us connect to other nodes in a graph. const audioCtx = new AudioContext() const audio = document.querySelector('audio') const input = audioCtx.createAudioSourceNode(audio) input.connect(audioCtx.destination) Great. We’ve made something that looks and sounds exactly the same as it did before. Go us. Gain Let’s plug in a GainNode - this allows you to alter the amplitude (volume) of an an audio stream. We can hook this node up to an <input> element by setting the gain property of the node. (The syntax for this is kind of weird because it’s an AudioParam which has options to set values at precise intervals). const node = audioCtx.createGain() const input = document.querySelector('input') input.oninput = () => node.gain.value = parseFloat(input.value) input.connect(node) node.connect(audioCtx.destination) You can now see a range input, which can be dragged to update the state of our graph. This input could be any kind of element, so now you’ll be free to build the volume control of your dreams. There’s a number of nodes that let you modify/filter an audio stream in more interesting ways. Head over to the MDN Web Audio page for a list of them. Analysers Something else we can add to our graph is an AnalyserNode. This doesn’t modify the audio at all, but allows us to inspect the sounds that are flowing through it. We can put this into our graph between our AudioSourceNode and the GainNode. const analyser = audioCtx.createAnalyser() input.connect(analyser) analyser.connect(gain) gain.connect(audioCtx.destination) And now we have an analyser. We can access it from elsewhere to drive any kind of visuals. For instance, if we wanted to draw lines on a canvas we could totally do that: const waveform = new Uint8Array(analyser.fftSize) const frequencies = new Uint8Array(analyser.frequencyBinCount) const ctx = canvas.getContext('2d') const loop = () => { requestAnimationFrame(loop) analyser.getByteTimeDomainData(waveform) analyser.getByteFrequencyData(frequencies) ctx.beginPath() waveform.forEach((f, i) => ctx.lineTo(i, f)) ctx.lineTo(0,255) frequencies.forEach((f, i) => ctx.lineTo(i, 255-f)) ctx.stroke() } loop() You can see that we have two arrays of data available (I added colours for clarity): The waveform - the raw samples of the audio being played. The frequencies - a fourier transform of the audio passing through the node. What’s cool about this is that you’re not tied to any specific functionality of the Web Audio API. If it’s possible for you to update something with an array of numbers, then you can just apply it to the output of the analyser node. For instance, if we wanted to, we could definitely animate a list of emoji in time with our music. spans.forEach( (s, i) => s.style.transform = `scale(${1 + (frequencies[i]/100)})` ) 🔈🎤🎤🎤🎺🎷📯🎶🔊🎸🎺🎤🎸🎼🎷🎺🎻🎸🎻🎺🎸🎶🥁🎶🎵🎵🎷📯🎸🎹🎤🎷🎻🎷🔈🔊📯🎼🎤🎵🎼📯🥁🎻🎻🎤🔉🎵🎹🎸🎷🔉🔈🔉🎷🎶🔈🎸🎸🎻🎤🥁🎼📯🎸🎸🎼🎸🥁🎼🎶🎶🥁🎤🔊🎷🔊🔈🎺🔊🎻🎵🎻🎸🎵🎺🎤🎷🎸🎶🎼📯🔈🎺🎤🎵🎸🎸🔊🎶🎤🥁🎵🎹🎸🔈🎻🔉🥁🔉🎺🔊🎹🥁🎷📯🎷🎷🎤🎸🔉🎹🎷🎸🎺🎼🎤🎼🎶🎷🎤🎷📯📯🎻🎤🎷📯🎹🔈🎵🎹🎼🔊🔉🔉🔈🎶🎸🥁🎺🔈🎷🎵🔉🥁🎷🎹🎷🔊🎤🎤🔊🎤🎤🎹🎸🎹🔉🎷 Generating Audio So far, we’ve been using the <audio> element as a source of sound. There’s a few other sources of audio that we can use. We’ll look at the AudioBufferNode - which allows you to manually generate a sound sample, and then connect it to our graph. First we have to create an AudioBuffer, which holds our raw data, then we pass that to an AudioBufferNode which we can then treat just like our AudioSource node. This can get a bit boring, so we’ll use a helper method that makes it simpler to generate sounds. const generator = (audioCtx, target) => (seconds, fn) => { const { sampleRate } = audioCtx const buffer = audioCtx.createBuffer( 1, sampleRate * seconds, sampleRate ) const data = buffer.getChannelData(0) for (var i = 0; i < data.length; i++) { data[i] = fn(i / sampleRate, seconds) } return () => { const source = audioCtx.createBufferSource() source.buffer = audioBuffer source.connect(target || audioCtx.destination) source.start() } } const sound = generator(audioCtx, gain) Our wrapper will let us provide a function that maps time (in seconds) to a sample (between 1 and -1). This generates a waveform, like we saw before with the analyser node. For example, the following will generate 0.75 seconds of white noise at 20% volume. const noise = sound(0.75, t => Math.random() * 0.2) button.onclick = noise Noise Now we’ve got a noisy button! Handy. Rather than having a static set of audio nodes, each time we click the button, we add a new node to our graph. Although this feels inefficient, it’s not actually too bad - the browser can do a good job of cleaning up old nodes once they’ve played. An interesting property of defining sounds as functions is that we can combine multiple function to generate new sounds. So if we wanted to fade our noise in and out, we could write a higher order function that does that. const ease = fn => (t, s) => fn(t) * Math.sin((t / s) * Math.PI) const noise = sound(0.75, ease(t => Math.random() * 0.2)) ease(noise) And we can do more than just white noise - if we use Math.sin, we can generate some nice pure tones. // Math.sin with period of 0..1 const wave = v => Math.sin(Math.PI * 2 * v) const hz = f => t => wave(t * f) const _440hz = sound(0.75, ease(hz(440))) const _880hz = sound(0.75, ease(hz(880))) 440Hz 880Hz We can also make our functions more complex. Below we’re combining several frequencies to make a richer sounding tone. const harmony = f => [4, 3, 2, 1].reduce( (v, h, i) => (sin(f * h) * (i+1) ) + v ) const a440 = sound(0.75, ease(harmony(440))) 440Hz 880Hz Cool. We’re still not using any audio-specific functionality, so we can repurpose anything that does an operation on data. For example, we can use d3.js - usually used for interactive data visualisations - to generate a triangular waveform. const triangle = d3.scaleLinear() .domain([0, .5, 1]) .range([-1, 1, -1]) const wave = t => triangle(t % 1) const a440 = sound(0.75, ease(harmony(440))) 440Hz 880Hz It’s pretty interesting to play around with different functions. I’ve plonked everything in jsbin if you want to have a play yourself. A departure from best practice We’ve been generating our audio from scratch, but most of what we’ve looked at can be implemented by a series of native Web Audio nodes. This would be way performant (because it’s not happening on the main thread), and more flexible in some ways (because you can set timings dynamically whilst the note is playing). But we’re going to stay with this approach because it’s fun, and sometimes the fun thing to do might not technically be the best thing to do. Making a keyboard Having a button that makes a sound is totally great, but how about lots of buttons that make lots of sounds? Yup, totally greater-er. The first thing we need to know is the frequency of each note. I thought this would be awkward because pianos were invented more than 250 years before the Hz unit was defined, so surely there wouldn’t be a simple mapping between the two? const freq = note => 27.5 * Math.pow(2, (note - 21) / 12) This equation blows my mind; I’d never really figured how tightly music and maths fit together. When you see a chord or melody, you can directly map it back to a mathematical pattern. Our keyboard is actually an SVG picture of a keyboard, so we can traverse the elements of it and map each element to a sound generated by one of the functions that we came up with before. Array.from(svg.querySelector('rect')) .sort((a, b) => + a.x - b.x) .forEach((key, i) => key.addEventListener('touchstart', sound(0.75, ease(harmony(freq(i + 48)))) ) ) rect {stroke: #ddd;} rect:hover {opacity: 0.8; stroke: #000} Et voilà. We have a keyboard. What I like about this is that it’s completely pure - there’s no lookup tables or hardcoded attributes; we’ve just defined a mapping from SVG elements to the sound they should probably make. Doing better in the future As I mentioned before, this could be implemented more performantly with Web Audio nodes, or even better - use something like Tone.js to be performant for you. Web Audio has been around for a while, though we’re getting new challenges with immersive WebXR experiences, where spatial audio becomes really important. There’s also always support and API improvements (if you like AudioBufferNode, you’re going to love AudioWorklet) Conclusion And that’s about it. Web Audio isn’t some black box, you can easily link it with whatever framework, or UI that you’ve built (whether you should is an entirely different question). If anyone ever asks you “could you turn this SVG into a musical instrument?” you don’t have to stare blankly at them any more. (function(a,c){var b=a.createElement("script");if(!("noModule"in b)&&"on"+c in b){var d=!1;a.addEventListener(c,function(a){if(a.target===b)d=!0;else if(!a.target.hasAttribute("nomodule")||!d)return;a.preventDefault()},!0);b.type="module";b.src=".";a.head.appendChild(b);b.remove()}})(document,"beforeload"); 2017 Ben Foxall benfoxall 2017-12-17T00:00:00+00:00 https://24ways.org/2017/feeding-the-audio-graph/ code
211 Automating Your Accessibility Tests Accessibility is one of those things we all wish we were better at. It can lead to a bunch of questions like: how do we make our site better? How do we test what we have done? Should we spend time each day going through our site to check everything by hand? Or just hope that everyone on our team has remembered to check their changes are accessible? This is where automated accessibility tests can come in. We can set up automated tests and have them run whenever someone makes a pull request, and even alongside end-to-end tests, too. Automated tests can’t cover everything however; only 20 to 50% of accessibility issues can be detected automatically. For example, we can’t yet automate the comparison of an alt attribute with an image’s content, and there are some screen reader tests that need to be carried out by hand too. To ensure our site is as accessible as possible, we will still need to carry out manual tests, and I will cover these later. First, I’m going to explain how I implemented automated accessibility tests on Elsevier’s ecommerce pages, and share some of the lessons I learnt along the way. Picking the right tool One of the hardest, but most important parts of creating our automated accessibility tests was choosing the right tool. We began by investigating aXe CLI, but soon realised it wouldn’t fit our requirements. It couldn’t check pages that required a visitor to log in, so while we could test our product pages, we couldn’t test any customer account pages. Instead we moved over to Pa11y. Its beforeScript step meant we could log into the site and test pages such as the order history. The example below shows the how the beforeScript step completes a login form and then waits for the login to complete before testing the page: beforeScript: function(page, options, next) { // An example function that can be used to make sure changes have been confirmed before continuing to run Pa11y function waitUntil(condition, retries, waitOver) { page.evaluate(condition, function(err, result) { if (result || retries < 1) { // Once the changes have taken place continue with Pa11y testing waitOver(); } else { retries -= 1; setTimeout(function() { waitUntil(condition, retries, waitOver); }, 200); } }); } // The script to manipulate the page must be run with page.evaluate to be run within the context of the page page.evaluate(function() { const user = document.querySelector('#login-form input[name="email"]'); const password = document.querySelector('#login-form input[name="password"]'); const submit = document.querySelector('#login-form input[name="submit"]'); user.value = 'user@example.com'; password.value = 'password'; submit.click(); }, function() { // Use the waitUntil function to set the condition, number of retries and the callback waitUntil(function() { return window.location.href === 'https://example.com'; }, 20, next); }); } The waitUntil callback allows the test to be delayed until our test user is successfully logged in. Another thing to consider when picking a tool is the type of error messages it produces. aXe groups all elements with the same error together, so the list of issues is a lot easier to read, and it’s easier to identify the most commons problems. For example, here are some elements that have insufficient colour contrast: Violation of "color-contrast" with 8 occurrences! Ensures the contrast between foreground and background colors meets WCAG 2 AA contrast ratio thresholds. Correct invalid elements at: - #maincontent > .make_your_mark > div:nth-child(2) > p > span > span - #maincontent > .make_your_mark > div:nth-child(4) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(2) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(4) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(6) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(8) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(10) > p > span > span - #maincontent > .inform_your_decisions > div:nth-child(12) > p > span > span For details, see: https://dequeuniversity.com/rules/axe/2.5/color-contrast aXe also provides links to their site where they discuss the best way to fix the problem. In comparison, Pa11y lists each individual error which can lead to a very verbose list. However, it does provide helpful suggestions of how to fix problems, such as suggesting an alternative shade of a colour to use: • Error: This element has insufficient contrast at this conformance level. Expected a contrast ratio of at least 4.5:1, but text in this element has a contrast ratio of 2.96:1. Recommendation: change text colour to #767676. ⎣ WCAG2AA.Principle1.Guideline1_4.1_4_3.G18.Fail ⎣ #maincontent > div:nth-child(10) > div:nth-child(8) > p > span > span ⎣ <span style="color:#969696">Featured products:</span> Integrating into our build pipeline We decided the perfect time to run our accessibility tests would be alongside our end-to-end tests. We have a Jenkins job that detects changes to our staging site and then triggers the end-to-end tests, and in turn our accessibility tests. Our Jenkins job retrieves the contents of a GitHub repository containing our Pa11y script file and npm package manifest. Once Jenkins has cloned the repository, it installs any dependencies and executes the tests via: npm install && npm test Bundling the URLs to be tested into our test script means we don’t have a command line style test where we list each URL we wish to test in the Jenkins CLI. It’s an effective method but can also be cluttered, and obscure which URLs are being tested. In the middle of the office we have a monitor displaying a Jenkins dashboard and from this we can see if the accessibility tests are passing or failing. Everyone in the team has access to the Jenkins logs and when the build fails they can see why and fix the issue. Fixing the issues As mentioned earlier, Pa11y can generate a long list of areas for improvement which can be very verbose and quite overwhelming. I recommend going through the list to see which issues occur most frequently and fix those first. For example, we initially had a lot of errors around colour contrast, and one shade of grey in particular. By making this colour darker, the number of errors decreased, and we could focus on the remaining issues. Another thing I like to do is to tackle the quick fixes, such as adding alt text to images. These are small things that allow us to make an impact instantly, giving us time to fix more detailed concerns such as addressing tabindex issues, or speaking to our designers about changing the contrast of elements on the site. Manual testing Adding automated tests to check our site for accessibility is great, but as I mentioned earlier, this can only cover 20-50% of potential issues. To improve on this, we need to test by hand too, either by ourselves or by asking others. One way we can test our site is to throw our mouse or trackpad away and interact with the site using only a keyboard. This allows us to check items such as tab order, and ensure menu items, buttons etc. can be used without a mouse. The commands may be different on different operating systems, but there are some great guides online for learning more about these. It’s tempting to add alt text and aria-labels to make errors go away, but if they don’t make any sense, what use are they really? Using a screenreader we can check that alt text accurately represents the image. This is also a great way to double check that our ARIA roles make sense, and that they correctly identify elements and how to interact with them. When testing our site with screen readers, it’s important to remember that not all screen readers are the same and some may interact with our site differently to others. Consider asking a range of people with different needs and abilities to test your site, too. People experience the web in numerous ways, be they permanent, temporary or even situational. They may interact with your site in ways you hadn’t even thought about, so this is a good way to broaden your knowledge and awareness. Tips and tricks One of our main issues with Pa11y is that it may find issues we don’t have the power to solve. A perfect example of this is the one pixel image Facebook injects into our site. So, we wrote a small function to go though such errors and ignore the ones that we cannot fix. const test = pa11y({ .... hideElements: '#ratings, #js-bigsearch', ... }); const ignoreErrors: string[] = [ '<img src="https://books.google.com/intl/en/googlebooks/images/gbs_preview_button1.gif" border="0" style="cursor: pointer;" class="lightbox-is-image">', '<script type="text/javascript" id="">var USI_orderID=google_tag_mana...</script>', '<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=123456789012345&ev=PageView&noscript=1">' ]; const filterResult = result => { if (ignoreErrors.indexOf(result.context) > -1) { return false; } return true; }; Initially we wanted to focus on fixing the major problems, so we added a rule to ignore notices and warnings. This made the list or errors much smaller and allowed us focus on fixing major issues such as colour contrast and missing alt text. The ignored notices and warnings can be added in later after these larger issues have been resolved. const test = pa11y({ ignore: [ 'notice', 'warning' ], ... }); Jenkins gotchas While using Jenkins we encountered a few problems. Sometimes Jenkins would indicate a build had passed when in reality it had failed. This was because Pa11y had timed out due to PhantomJS throwing an error, or the test didn’t go past the first URL. Pa11y has recently released a new beta version that uses headless Chrome instead of PhantomJS, so hopefully these issues will less occur less often. We tried a few approaches to solve these issues. First we added error handling, iterating over the array of test URLs so that if an unexpected error happened, we could catch it and exit the process with an error indicating that the job had failed (using process.exit(1)). for (const url of urls) { try { console.log(url); let urlResult = await run(url); urlResult = urlResult.filter(filterResult); urlResult.forEach(result => console.log(result)); } catch (e) { console.log('Error:', e); process.exit(1); } } We also had issues with unhandled rejections sometimes caused by a session disconnecting or similar errors. To avoid Jenkins indicating our site was passing with 100% accessibility, when in reality it had not executed any tests, we instructed Jenkins to fail the job when an unhandled rejection or uncaught exception occurred: process.on('unhandledRejection', (reason, p) => { console.log('Unhandled Rejection at:', p, 'reason:', reason); process.exit(1); }); process.on('uncaughtException', (err) => { console.log('Caught exception: ${err}n'); process.exit(1); }); Now it’s your turn That’s it! That’s how we automated accessibility testing for Elsevier ecommerce pages, allowing us to improve our site and make it more accessible for everyone. I hope our experience can help you automate accessibility tests on your own site, and bring the web a step closer to being accessible to all. 2017 Seren Davies serendavies 2017-12-07T00:00:00+00:00 https://24ways.org/2017/automating-your-accessibility-tests/ code
213 Accessibility Through Semantic HTML Working on Better, a tracker blocker, I spend an awful lot of my time with my nose in other people’s page sources. I’m mostly there looking for harmful tracking scripts, but often notice the HTML on some of the world’s most popular sites is in a sad state of neglect. What does neglected HTML look like? Here’s an example of the markup I found on a news site just yesterday. There’s a bit of text, a few links, and a few images. But mostly it’s div elements. <div class="block_wrapper"> <div class="block_content"> <div class="box"> <div id="block1242235"> <div class="column"> <div class="column_content"> <a class="close" href="#"><i class="fa"></i></a> </div> <div class="btn account_login"></div> Some text <span>more text</span> </div> </div> </div> </div> </div> divs and spans, why do we use them so much? While I find tracking scripts completely inexcusable, I do understand why people write HTML like the above. As developers, we like to use divs and spans as they’re generic elements. They come with no associated default browser styles or behaviour except that div displays as a block, and span displays inline. If we make our page up out of divs and spans, we know we’ll have absolute control over styles and behaviour cross-browser, and we won’t need a CSS reset. Absolute control may seem like an advantage, but there’s a greater benefit to less generic, more semantic elements. Browsers render semantic elements with their own distinct styles and behaviours. For example, button looks and behaves differently from a. And ul is different from ol. These defaults are shortcuts to a more usable and accessible web. They provide consistent and well-tested components for common interactions. Semantic elements aid usability A good example of how browser defaults can benefit the usability of an element is in the <select> option menu. In Safari on the desktop, the browser renders <select> as a popover-style menu. On a touchscreen, Safari overlays the same menu over the lower half of the screen as a “picker view.” Option menu in Safari on macOS. Option menu picker in Safari on iOS. The iOS picker is a much better experience than struggling to pick from a complicated interface inside the page. The menu is shown more clearly than in the confined space on the page, which makes the options easier to read. The required swipe and tap gestures are consistent with the rest of the operating system, making the expected interaction easier to understand. The whole menu is scaled up, meaning the gestures don’t need such fine motor control. Good usability is good accessibility. When we choose to use a div or span over a more semantic HTML element, we’re also doing hard work the browser could be doing for us. We don’t need to tie ourselves in knots making a custom div into a keyboard navigable option menu. Using select passes the bulk of the responsibility over to the browser.  Letting the browser do most of the work is also more future-friendly. More devices, with different expected interactions, will be released in the future. When that happens, the devices’ browsers can adapt our sites according to those interactions. Then we can spend our time doing something more fun than rewriting cross-browser JavaScript for each new device. HTML’s impact on accessibility Assistive technology also uses semantic HTML to understand how best to convey each element to its user. For screen readers Semantic HTML gives context to screen readers. Screen readers are a type of assistive technology that reads the content of the screen to the person using it. All sites have a linear page source. Sighted visitors can use visual cues on the page to navigate to their desired content in a non-linear fashion. As screen readers output audio (and sometimes braille), those visual cues aren’t usable in the same way. Screen readers provide alternative means of navigation, enabling people to jump between different types of content, such as links, forms, headings, lists, and paragraphs. If all our content is marked up using divs and spans, we’re not giving screen readers a chance to index the valuable content. For keyboard navigation Keyboard-only navigation is also aided by semantic HTML. Forms, option menus, navigation, video, and audio are particularly hard for people relying on a keyboard to access. For instance, option menus and navigation can be very fiddly if you need to use a mouse to hover a menu open and move to select the desired item at the same time.  Again, we can leave much of the interaction to the browser through semantic HTML. Semantic form elements can convey if a check box has been checked, or which label is associated with which input field. These default behaviours can make the difference between a person being able to use a form or leaving the site out of frustration. Did I convince you yet? I hope so. Let’s finish with some easy guidelines to follow. 1. Use the most semantic HTML element for the job When you reach for a div, first check if there’s a better element to do the job. What is the role of that element? How should a person be interacting with the element? Are you using class names like nav, header, or main? There are HTML5 elements for those sections! Using specific elements can also make writing CSS simpler, and ensure a consistent design with minimal effort. 2. Separate structure and style Don’t choose HTML elements based on how they’re styled in your CSS. Nowadays, common practice is to use class names rather than elements for CSS selectors. You’re unlikely to wrap all your page content in an <h1> element because you want all the text to be big and bold. Still, it can be easy to choose an HTML element because it will be the easiest to style. Focusing on content without style will help us choose the most semantic HTML element without that temptation. For example, you could add a class of .btn to a div to make it look like a button. But we all know that only a button will really behave like a button. 3. Use progressive enhancement for enhanced functionality Airbnb and Groupon recently proved we’re not past the laziness of “this site only works in X browser.” Baffling disregard for the open web aside, making complex interactive experiences work cross-browser and cross-device is not easy. We can use progressive enhancement to layer fancy or unsupported features on top of a baseline “it works” experience.  We should build the baseline experience on a foundation of accessible, semantic HTML. Then, if you really want to add a specific feature for a proprietary browser, you can layer that on top, without breaking the underlying experience. 4. Test your work Validators are always valuable for checking the browser will be able to correctly interpret your markup. Document outline checkers can be valuable for testing your structure, but be aware that the HTML5 document outline is not actually implemented in browsers. Once you’ve got something resembling a web page, test the experience! Ensure that semantic HTML element you chose looks and behaves in a predictable manner consistent with its use across the web. Test cross-browser, test cross-device, and test with assistive technology. Testing with assistive technology is not as expensive as it used to be, you can even use your smartphone for testing on iOS and Android. Your visitors will thank you! Further reading Accessibility For Everyone by Laura Kalbag HTML5 Doctor HTML5 Accessibility An overview of HTML5 Semantics HTML reference on MDN  Heydon Pickering’s Inclusive Design Checklist The Paciello Group’s Inclusive Design Principles 2017 Laura Kalbag laurakalbag 2017-12-15T00:00:00+00:00 https://24ways.org/2017/accessibility-through-semantic-html/ code
221 “Probably, Maybe, No”: The State of HTML5 Audio With the hype around HTML5 and CSS3 exceeding levels not seen since 2005’s Ajax era, it’s worth noting that the excitement comes with good reason: the two specifications render many years of feature hacks redundant by replacing them with native features. For fun, consider how many CSS2-based rounded corners hacks you’ve probably glossed over, looking for a magic solution. These days, with CSS3, the magic is border-radius (and perhaps some vendor prefixes) followed by a coffee break. CSS3’s border-radius, box-shadow, text-shadow and gradients, and HTML5’s <canvas>, <audio> and <video> are some of the most anticipated features we’ll see put to creative (ab)use as adoption of the ‘new shiny’ grows. Developers jumping on the cutting edge are using subsets of these features to little detriment, in most cases. The more popular CSS features are design flourishes that can degrade nicely, but the current audio and video implementations in particular suffer from a number of annoyances. The new shiny: how we got here Sound involves one of the five senses, a key part of daily life for most – and yet it has been strangely absent from HTML and much of the web by default. From a simplistic perspective, it seems odd that HTML did not include support for the full multimedia experience earlier, despite the CD-ROM-based craze of the early 1990s. In truth, standards like HTML can take much longer to bake, but eventually deliver the promise of a lowered barrier to entry, consistent implementations and shiny new features now possible ‘for free’ just about everywhere. <img> was introduced early and naturally to HTML, despite having some opponents at the time. Perhaps <audio> and <video> were avoided, given the added technical complexity of decoding various multi-frame formats, plus the hardware and bandwidth limitations of the era. Perhaps there were quarrels about choosing a standard format or – more simply – maybe these elements just weren’t considered to be applicable to the HTML-based web at the time. In any event, browser plugins from programs like RealPlayer and QuickTime eventually helped to fill the in-page audio/video gap, handling <object> and <embed> markup which pointed to .wav, .avi, .rm or .mov files. Suffice it to say, the experience was inconsistent at best and, on the standards side of the fence right now, so is HTML5 in terms of audio and video. : the theory As far as HTML goes, the code for <audio> is simple and logical. Just as with <img>, a src attribute specifies the file to load. Pretty straightforward – sounds easy, right? <audio src="mysong.ogg" controls> <!-- alternate content for unsupported case --> Download <a href="mysong.ogg">mysong.ogg</a>; </audio> Ah, if only it were that simple. The first problem is that the OGG audio format, while ‘free’, is not supported by some browsers. Conversely, nor is MP3, despite being a de facto standard used in all kinds of desktop software (and hardware). In fact, as of November 2010, no single audio format is commonly supported across all major HTML5-enabled browsers. What you end up writing, then, is something like this: <audio controls> <source src="mysong.mp3" /> <source src="mysong.ogg" /> <!-- alternate content for unsupported case, maybe Flash, etc. --> Download <a href="mysong.ogg">mysong.ogg</a> or <a href="mysong.mp3">mysong.mp3</a> </audio> Keep in mind, this is only a ‘first class’ experience for the HTML5 case; also, for non-supported browsers, you may want to look at another inline player (object/embed, or a JavaScript plus Flash API) to have inline audio. You can imagine the added code complexity in the case of supporting ‘first class’ experiences for older browsers, too. : the caveats With <img>, you typically don’t have to worry about format support – it just works – and that’s part of what makes a standard wonderful. JPEG, PNG, BMP, GIF, even TIFF images all render just fine if for no better reason, perhaps, than being implemented during the ‘wild west’ days of the web. The situation with <audio> today reflects a very different – read: business-aware – environment in 2010. (Further subtext: There’s a lot of [potential] money involved.) Regrettably, this is a collision of free and commercial interests, where the casualty is ultimately the user. Second up in the casualty list is you, the developer, who has to write additional code around this fragmented support. The HTML5 audio API as implemented in JavaScript has one of the most un-computer-like responses I’ve ever seen, and inspired the title of this post. Calling new Audio().canPlayType('audio/mp3'), which queries the system for format support according to a MIME type, is supposed to return one of “probably”, “maybe”, or “no”. Sometimes, you’ll just get a null or empty string, which is also fun. A “maybe” response does not guarantee that a format will be supported; sometimes audio/mp3 gives “maybe,” but then audio/mpeg; codecs="mp3" will give a more-solid “probably” response. This can vary by browser or platform, too, depending on native support – and finally, the user may also be able to install codecs, extending support to include other formats. (Are you excited yet?) Damn you, warring formats! New market and business opportunities go hand-in-hand with technology developments. What we have here is certainly not failure to communicate; rather, we have competing parties shouting loudly in public in attempts to influence mindshare towards a de facto standard for audio and video. Unfortunately, the current situation means that at least two formats are effectively required to serve the majority of users correctly. As it currently stands, we have the free and open source software camp of OGG Vorbis/WebM and its proponents (notably, Mozilla, Google and Opera in terms of browser makers), up against the non-free, proprietary and ‘closed’ camp of MP3 and MPEG4/HE-AAC/H.264 – which is where you’ll find commitments from Apple and Microsoft, among others. Apple is likely in with H.264 for the long haul, given its use of the format for its iTunes music store and video offerings. It is generally held that H.264 is a technically superior format in terms of file size versus quality, but it involves intellectual property and, in many use cases, requires licensing fees. To be fair, there is a business model with H.264 and much has been invested in its development, but this approach is not often the kind that wins over the web. On that front, OGG/WebM may eventually win for being a ‘free’ format that does not involve a licensing scheme. Closed software and tools ideologically clash with the open nature of the web, which exists largely thanks to free and open technology. Because of philosophical and business reasons, support for audio and video is fragmented across browsers adopting HTML5 features. It does not help that a large amount of audio and video currently exists in non-free MP3 and MPEG-4 formats. Adoption of <audio> and <video> may be slowed, since it is more complex than <img> and may feel ‘broken’ to developers when edge cases are encountered. Furthermore, the HTML5 spec does not mandate a single required format. The end result is that, as a developer, you must currently provide at least both MP3 and OGG, for example, to serve most existing HTML5-based user agents. Transitioning to There will be some growing pains as developers start to pick up the new HTML5 shiny, while balancing the needs of current and older agents that don’t support either <audio> or the preferred format you may choose (for example, MP3). In either event, Flash or other plugins can be used as done traditionally within HTML4 documents to embed and play the relevant audio. The SoundManager 2 page player demo in action. Ideally, HTML5 audio should be used whenever possible with Flash as the backup option. A few JavaScript/Flash-based audio player projects exist which balance the two; in attempting to tackle this problem, I develop and maintain SoundManager 2, a JavaScript sound API which transparently uses HTML5 Audio() and, if needed, Flash for playing audio files. The internals can get somewhat ugly, but the transition between HTML4 and HTML5 is going to be just that – and even with HTML5, you will need some form of format fall-back in addition to graceful degradation. It may be safest to fall back to MP3/MP4 formats for inline playback at this time, given wide support via Flash, some HTML5-based browsers and mobile devices. Considering the amount of MP3/MP4 media currently available, it is wiser to try these before falling through to a traditional file download process. Early findings Here is a brief list of behavioural notes, annoyances, bugs, quirks and general weirdness I have found while playing with HTML5-based audio at time of writing (November 2010): Apple iPad/iPhone (iOS 4, iPad 3.2+) Only one sound can be played at a time. If a second sound starts, the first is stopped. No auto-play allowed. Sounds follow the pop-up window security model and can only be started from within a user event handler such as onclick/touch, and so on. Otherwise, playback attempts silently fail. Once started, a sequence of sounds can be created or played via the ‘finish’ event of the previous sound (for example, advancing through a playlist without interaction after first track starts). iPad, iOS 3.2: Occasional ‘infinite loop’ bug seen where audio does not complete and stop at a sound’s logical end – instead, it plays again from the beginning. Might be specific to example file format (HE-AAC) encoded from iTunes. Apple Safari, OS X Snow Leopard 10.6.5 Critical bug: Safari 4 and 5 intermittently fail to load or play HTML5 audio on Snow Leopard due to bug(s) in QuickTime X and/or other underlying frameworks. Known Apple ‘radar’ bug: bugs.webkit.org #32159 (see also, test case.) Amusing side note: Safari on Windows is fine. Apple Safari, Windows Food for thought: if you download “Safari” alone on Windows, you will not get HTML5 audio/video support (tested in WinXP). You need to download “Safari + QuickTime” to get HTML5 audio/video support within Safari. (As far as I’m aware, Chrome, Firefox and Opera either include decoders or use system libraries accordingly. Presumably IE 9 will use OS-level APIs.) General Quirks Seeking and loading, ‘progress’ events, and calculating bytes loaded versus bytes total should not be expected to be linear, as users can arbitrarily seek within a sound. It appears that some support for HTTP ranges exists, which adds a bit of logic to UI code. Browsers seem to vary slightly in their current implementations of these features. The onload event of a sound may be of little relevance, if non-linear loading is involved (see above note re: seeking). Interestingly (perhaps I missed it), the current spec does not seem to specify a panning or left/right channel mix option. The preload attribute values may vary slightly between browsers at this time. Upcoming shiny: HTML5 Audio Data API With access to audio data, you can incorporate waveform and spectrum elements that make your designs react to music. The HTML5 audio spec does a good job covering the basics of playback, but did not initially get into manipulation or generation of audio on-the-fly, something Flash has had for a number of years now. What if JavaScript could create, monitor and change audio dynamically, like a sort of audio <canvas> element? With that kind of capability, many dynamic audio processing features become feasible and, when combined with other media, can make for some impressive demos. What started as a small idea among a small group of audio and programming enthusiasts grew to inspire a W3C audio incubator group, and continued to establish the Mozilla Audio Data API. Contributors wrote a patch for Firefox which was reviewed and revised, and is now slated to be in the public release of Firefox 4. Some background and demos are also detailed in an article from the BBC R&D blog. There are plenty of live demos to see, which give an impression of the new creative ideas this API enables. Many concepts are not new in themselves, but it is exciting to see this sort of thing happening within the native browser context. Mozilla is not alone in this effort; the WebKit folks are also working on a JavaScriptAudioNode interface, which implements similar audio buffering and sample elements. The future? It is my hope that we’ll see a common format emerge in terms of support across the major browsers for both audio and video; otherwise, support will continue to be fragmented and mildly frustrating to develop for, and that can impede growth of the feature. It’s a big call, but if <img> had lacked a common format back in the wild west era, I doubt the web would have grown to where it is today. Complaints and nitpicks aside, HTML5 brings excellent progress on the browser multimedia front, and the first signs of native support are a welcome improvement given all audio and video previously relied on plugins. There is good reason to be excited. While there is room for more, support could certainly be much worse – and as tends to happen with specifications, the implementations targeting them should improve over time. Note: Thanks to Nate Koechley, who suggested the Audio().canPlayType() response be part of the article title. 2010 Scott Schiller scottschiller 2010-12-08T00:00:00+00:00 https://24ways.org/2010/the-state-of-html5-audio/ code
223 Calculating Color Contrast Some websites and services allow you to customize your profile by uploading pictures, changing the background color or other aspects of the design. As a customer, this personalization turns a web app into your little nest where you store your data. As a designer, letting your customers have free rein over the layout and design is a scary prospect. So what happens to all the stock text and images that are designed to work on nice white backgrounds? Even the Mac only lets you choose between two colors for the OS, blue or graphite! Opening up the ability to customize your site’s color scheme can be a recipe for disaster unless you are flexible and understand how to find maximum color contrasts. In this article I will walk you through two simple equations to determine if you should be using white or black text depending on the color of the background. The equations are both easy to implement and produce similar results. It isn’t a matter of which is better, but more the fact that you are using one at all! That way, even with the craziest of Geocities color schemes that your customers choose, at least your text will still be readable. Let’s have a look at a range of various possible colors. Maybe these are pre-made color schemes, corporate colors, or plucked from an image. Now that we have these potential background colors and their hex values, we need to find out whether the corresponding text should be in white or black, based on which has a higher contrast, therefore affording the best readability. This can be done at runtime with JavaScript or in the back-end before the HTML is served up. There are two functions I want to compare. The first, I call ’50%’. It takes the hex value and compares it to the value halfway between pure black and pure white. If the hex value is less than half, meaning it is on the darker side of the spectrum, it returns white as the text color. If the result is greater than half, it’s on the lighter side of the spectrum and returns black as the text value. In PHP: function getContrast50($hexcolor){ return (hexdec($hexcolor) > 0xffffff/2) ? 'black':'white'; } In JavaScript: function getContrast50(hexcolor){ return (parseInt(hexcolor, 16) > 0xffffff/2) ? 'black':'white'; } It doesn’t get much simpler than that! The function converts the six-character hex color into an integer and compares that to one half the integer value of pure white. The function is easy to remember, but is naive when it comes to understanding how we perceive parts of the spectrum. Different wavelengths have greater or lesser impact on the contrast. The second equation is called ‘YIQ’ because it converts the RGB color space into YIQ, which takes into account the different impacts of its constituent parts. Again, the equation returns white or black and it’s also very easy to implement. In PHP: function getContrastYIQ($hexcolor){ $r = hexdec(substr($hexcolor,0,2)); $g = hexdec(substr($hexcolor,2,2)); $b = hexdec(substr($hexcolor,4,2)); $yiq = (($r*299)+($g*587)+($b*114))/1000; return ($yiq >= 128) ? 'black' : 'white'; } In JavaScript: function getContrastYIQ(hexcolor){ var r = parseInt(hexcolor.substr(0,2),16); var g = parseInt(hexcolor.substr(2,2),16); var b = parseInt(hexcolor.substr(4,2),16); var yiq = ((r*299)+(g*587)+(b*114))/1000; return (yiq >= 128) ? 'black' : 'white'; } You’ll notice first that we have broken down the hex value into separate RGB values. This is important because each of these channels is scaled in accordance to its visual impact. Once everything is scaled and normalized, it will be in a range between zero and 255. Much like the previous ’50%’ function, we now need to check if the input is above or below halfway. Depending on where that value is, we’ll return the corresponding highest contrasting color. That’s it: two simple contrast equations which work really well to determine the best readability. If you are interested in learning more, the W3C has a few documents about color contrast and how to determine if there is enough contrast between any two colors. This is important for accessibility to make sure there is enough contrast between your text and link colors and the background. There is also a great article by Kevin Hale on Particletree about his experience with choosing light or dark themes. To round it out, Jonathan Snook created a color contrast picker which allows you to play with RGB sliders to get values for YIQ, contrast and others. That way you can quickly fiddle with the knobs to find the right balance. Comparing results Let’s revisit our color schemes and see which text color is recommended for maximum contrast based on these two equations. If we use the simple ’50%’ contrast function, we can see that it recommends black against all the colors except the dark green and purple on the second row. In general, the equation feels the colors are light and that black is a better choice for the text. The more complex ‘YIQ’ function, with its weighted colors, has slightly different suggestions. White text is still recommended for the very dark colors, but there are some surprises. The red and pink values show white text rather than black. This equation takes into account the weight of the red value and determines that the hue is dark enough for white text to show the most contrast. As you can see, the two contrast algorithms agree most of the time. There are some instances where they conflict, but overall you can use the equation that you prefer. I don’t think it is a major issue if some edge-case colors get one contrast over another, they are still very readable. Now let’s look at some common colors and then see how the two functions compare. You can quickly see that they do pretty well across the whole spectrum. In the first few shades of grey, the white and black contrasts make sense, but as we test other colors in the spectrum, we do get some unexpected deviation. Pure red #FF0000 has a flip-flop. This is due to how the ‘YIQ’ function weights the RGB parts. While you might have a personal preference for one style over another, both are justifiable. In this second round of colors, we go deeper into the spectrum, off the beaten track. Again, most of the time the contrasting algorithms are in sync, but every once in a while they disagree. You can select which you prefer, neither of which is unreadable. Conclusion Contrast in color is important, especially if you cede all control and take a hands-off approach to the design. It is important to select smart defaults by making the contrast between colors as high as possible. This makes it easier for your customers to read, increases accessibility and is generally just easier on the eyes. Sure, there are plenty of other equations out there to determine contrast; what is most important is that you pick one and implement it into your system. So, go ahead and experiment with color in your design. You now know how easy it is to guarantee that your text will be the most readable in any circumstance. 2010 Brian Suda briansuda 2010-12-24T00:00:00+00:00 https://24ways.org/2010/calculating-color-contrast/ code
233 Wrapping Things Nicely with HTML5 Local Storage HTML5 is here to turn the web from a web of hacks into a web of applications – and we are well on the way to this goal. The coming year will be totally and utterly awesome if you are excited about web technologies. This year the HTML5 revolution started and there is no stopping it. For the first time all the browser vendors are rallying together to make a technology work. The new browser war is fought over implementation of the HTML5 standard and not over random additions. We live in exciting times. Starting with a bang As with every revolution there is a lot of noise with bangs and explosions, and that’s the stage we’re at right now. HTML5 showcases are often CSS3 showcases, web font playgrounds, or video and canvas examples. This is great, as it gets people excited and it gives the media something to show. There is much more to HTML5, though. Let’s take a look at one of the less sexy, but amazingly useful features of HTML5 (it was in the HTML5 specs, but grew at such an alarming rate that it warranted its own spec): storing information on the client-side. Why store data on the client-side? Storing information in people’s browsers affords us a few options that every application should have: You can retain the state of an application – when the user comes back after closing the browser, everything will be as she left it. That’s how ‘real’ applications work and this is how the web ones should, too. You can cache data – if something doesn’t change then there is no point in loading it over the Internet if local access is so much faster You can store user preferences – without needing to keep that data on your server at all. In the past, storing local data wasn’t much fun. The pain of hacky browser solutions In the past, all we had were cookies. I don’t mean the yummy things you get with your coffee, endorsed by the blue, furry junkie in Sesame Street, but the other, digital ones. Cookies suck – it isn’t fun to have an unencrypted HTTP overhead on every server request for storing four kilobytes of data in a cryptic format. It was OK for 1994, but really neither an easy nor a beautiful solution for the task of storing data on the client. Then came a plethora of solutions by different vendors – from Microsoft’s userdata to Flash’s LSO, and from Silverlight isolated storage to Google’s Gears. If you want to know just how many crazy and convoluted ways there are to store a bit of information, check out Samy’s evercookie. Clearly, we needed an easier and standardised way of storing local data. Keeping it simple – local storage And, lo and behold, we have one. The local storage API (or session storage, with the only difference being that session data is lost when the window is closed) is ridiculously easy to use. All you do is call a few methods on the window.localStorage object – or even just set the properties directly using the square bracket notation: if('localStorage' in window && window['localStorage'] !== null){ var store = window.localStorage; // valid, API way store.setItem(‘cow’,‘moo’); console.log( store.getItem(‘cow’) ); // => ‘moo’ // shorthand, breaks at keys with spaces store.sheep = ‘baa’ console.log( store.sheep ); // ‘baa’ // shorthand for all store[‘dog’] = ‘bark’ console.log( store[‘dog’] ); // => ‘bark’ } Browser support is actually pretty good: Chrome 4+; Firefox 3.5+; IE8+; Opera 10.5+; Safari 4+; plus iPhone 2.0+; and Android 2.0+. That should cover most of your needs. Of course, you should check for support first (or use a wrapper library like YUI Storage Utility or YUI Storage Lite). The data is stored on a per domain basis and you can store up to five megabytes of data in localStorage for each domain. Strings attached By default, localStorage only supports strings as storage formats. You can’t store results of JavaScript computations that are arrays or objects, and every number is stored as a string. This means that long, floating point numbers eat into the available memory much more quickly than if they were stored as numbers. var cowdesc = "the cow is of the bovine ilk, "+ "one end is for the moo, the "+ "other for the milk"; var cowdef = { ilk“bovine”, legs, udders, purposes front“moo”, end“milk” } }; window.localStorage.setItem(‘describecow’,cowdesc); console.log( window.localStorage.getItem(‘describecow’) ); // => the cow is of the bovine… window.localStorage.setItem(‘definecow’,cowdef); console.log( window.localStorage.getItem(‘definecow’) ); // => [object Object] = bad! This limits what you can store quite heavily, which is why it makes sense to use JSON to encode and decode the data you store: var cowdef = { "ilk":"bovine", "legs":4, "udders":4, "purposes":{ "front":"moo", "end":"milk" } }; window.localStorage.setItem(‘describecow’,JSON.stringify(cowdef)); console.log( JSON.parse( window.localStorage.getItem(‘describecow’) ) ); // => Object { ilk=“bovine”, more…} You can also come up with your own formatting solutions like CSV, or pipe | or tilde ~ separated formats, but JSON is very terse and has native browser support. Some use case examples The simplest use of localStorage is, of course, storing some data: the current state of a game; how far through a multi-form sign-up process a user is; and other things we traditionally stored in cookies. Using JSON, though, we can do cooler things. Speeding up web service use and avoiding exceeding the quota A lot of web services only allow you a certain amount of hits per hour or day, and can be very slow. By using localStorage with a time stamp, you can cache results of web services locally and only access them after a certain time to refresh the data. I used this technique in my An Event Apart 10K entry, World Info, to only load the massive dataset of all the world information once, and allow for much faster subsequent visits to the site. The following screencast shows the difference: For use with YQL (remember last year’s 24 ways entry?), I’ve built a small script called YQL localcache that wraps localStorage around the YQL data call. An example would be the following: yqlcache.get({ yql: 'select * from flickr.photos.search where text="santa"', id: 'myphotos', cacheage: ( 60*60*1000 ), callback: function(data) { console.log(data); } }); This loads photos of Santa from Flickr and stores them for an hour in the key myphotos of localStorage. If you call the function at various times, you receive an object back with the YQL results in a data property and a type property which defines where the data came from – live is live data, cached means it comes from cache, and freshcache indicates that it was called for the first time and a new cache was primed. The cache will work for an hour (60×60×1,000 milliseconds) and then be refreshed. So, instead of hitting the YQL endpoint over and over again, you hit it once per hour. Caching a full interface Another use case I found was to retain the state of a whole interface of an application by caching the innerHTML once it has been rendered. I use this in the Yahoo Firehose search interface, and you can get the full story about local storage and how it is used in this screencast: The stripped down code is incredibly simple (JavaScript with PHP embed): // test for localStorage support if(('localStorage' in window) && window['localStorage'] !== null){ var f = document.getElementById(‘mainform’); // test with PHP if the form was sent (the submit button has the name “sent”) // get the HTML of the form and cache it in the property “state” localStorage.setItem(‘state’,f.innerHTML); // if the form hasn’t been sent… // check if a state property exists and write back the HTML cache if(‘state’ in localStorage){ f.innerHTML = localStorage.getItem(‘state’); } } Other ideas In essence, you can use local storage every time you need to speed up access. For example, you could store image sprites in base-64 encoded datasets instead of loading them from a server. Or you could store CSS and JavaScript libraries on the client. Anything goes – have a play. Issues with local and session storage Of course, not all is rainbows and unicorns with the localStorage API. There are a few niggles that need ironing out. As with anything, this needs people to use the technology and raise issues. Here are some of the problems: Inadequate information about storage quota – if you try to add more content to an already full store, you get a QUOTA_EXCEEDED_ERR and that’s it. There’s a great explanation and test suite for localStorage quota available. Lack of automatically expiring storage – a feature that cookies came with. Pamela Fox has a solution (also available as a demo and source code) Lack of encrypted storage – right now, everything is stored in readable strings in the browser. Bigger, better, faster, more! As cool as the local and session storage APIs are, they are not quite ready for extensive adoption – the storage limits might get in your way, and if you really want to go to town with accessing, filtering and sorting data, real databases are what you’ll need. And, as we live in a world of client-side development, people are moving from heavy server-side databases like MySQL to NoSQL environments. On the web, there is also a lot of work going on, with Ian Hickson of Google proposing the Web SQL database, and Nikunj Mehta, Jonas Sicking (Mozilla), Eliot Graff (Microsoft) and Andrei Popescu (Google) taking the idea beyond simply replicating MySQL and instead offering Indexed DB as an even faster alternative. On the mobile front, a really important feature is to be able to store data to use when you are offline (mobile coverage and roaming data plans anybody?) and you can use the Offline Webapps API for that. As I mentioned at the beginning, we have a very exciting time ahead – let’s make this web work faster and more reliably by using what browsers offer us. For more on local storage, check out the chapter on Dive into HTML5. 2010 Christian Heilmann chrisheilmann 2010-12-06T00:00:00+00:00 https://24ways.org/2010/html5-local-storage/ code
234 An Introduction to CSS 3-D Transforms Ladies and gentlemen, it is the second decade of the third millennium and we are still kicking around the same 2-D interface we got three decades ago. Sure, Apple debuted a few apps for OSX 10.7 that have a couple more 3-D flourishes, and Microsoft has had that Flip 3D for a while. But c’mon – 2011 is right around the corner. That’s Twenty Eleven, folks. Where is our 3-D virtual reality? By now, we should be zipping around the Metaverse on super-sonic motorbikes. Granted, the capability of rendering complex 3-D environments has been present for years. On the web, there are already several solutions: Flash; three.js in <canvas>; and, eventually, WebGL. Finally, we meagre front-end developers have our own three-dimensional jewel: CSS 3-D transforms! Rationale Like a beautiful jewel, 3-D transforms can be dazzling, a true spectacle to behold. But before we start tacking 3-D diamonds and rubies to our compositions like Liberace‘s tailor, we owe it to our users to ask how they can benefit from this awesome feature. An entire application should not take advantage of 3-D transforms. CSS was built to style documents, not generate explorable environments. I fail to find a benefit to completing a web form that can be accessed by swivelling my viewport to the Sign-Up Room (although there have been proposals to make the web just that). Nevertheless, there are plenty of opportunities to use 3-D transforms in between interactions with the interface, via transitions. Take, for instance, the Weather App on the iPhone. The application uses two views: a details view; and an options view. Switching between these two views is done with a 3-D flip transition. This informs the user that the interface has two – and only two – views, as they can exist only on either side of the same plane. Flipping from details view to options view via a 3-D transition Also, consider slide shows. When you’re looking at the last slide, what cues tip you off that advancing will restart the cycle at the first slide? A better paradigm might be achieved with a 3-D transform, placing the slides side-by-side in a circle (carousel) in three-dimensional space; in that arrangement, the last slide obviously comes before the first. 3-D transforms are more than just eye candy. We can also use them to solve dilemmas and make our applications more intuitive. Current support The CSS 3D Transforms module has been out in the wild for over a year now. Currently, only Safari supports the specification – which includes Safari on Mac OS X and Mobile Safari on iOS. The support roadmap for other browsers varies. The Mozilla team has taken some initial steps towards implementing the module. Mike Taylor tells me that the Opera team is keeping a close eye on CSS transforms, and is waiting until the specification is fleshed out. And our best friend Internet Explorer still needs to catch up to 2-D transforms before we can talk about the 3-D variety. To make matters more perplexing, Safari’s WebKit cousin Chrome currently accepts 3-D transform declarations, but renders them in 2-D space. Chrome team member Paul Irish, says that 3-D transforms are on the horizon, perhaps in one of the next 8.0 releases. This all adds up to a bit of a challenge for those of us excited by 3-D transforms. I’ll give it to you straight: missing the dimension of depth can make degradation a bit ungraceful. Unless the transform is relatively simple and holds up in non-3D-supporting browsers, you’ll most likely have to design another solution. But what’s another hurdle in a steeplechase? We web folk have had our mettle tested for years. We’re prepared to devise multiple solutions. Here’s the part of the article where I mention Modernizr, and you brush over it because you’ve read this part of an article hundreds of times before. But seriously, it’s the best way to test for CSS 3-D transform support. Use it. Even with these difficulties mounting up, trying out 3-D transforms today is the right move. The CSS 3-D transforms module was developed by the same team at Apple that produced the CSS 2D Transforms and Animation modules. Both specifications have since been adopted by Mozilla and Opera. Transforming in three-dimensions now will guarantee you’ll be ahead of the game when the other browsers catch up. The choice is yours. You can make excuses and pooh-pooh 3-D transforms because they’re too hard and only snobby Apple fans will see them today. Or, with a tip of the fedora to Mr Andy Clarke, you can get hard-boiled and start designing with the best features out there right this instant. So, I bid you, in the words of the eternal Optimus Prime… Transform and roll out. Let’s get coding. Perspective To activate 3-D space, an element needs perspective. This can be applied in two ways: using the transform property, with the perspective as a functional notation: -webkit-transform: perspective(600); or using the perspective property: -webkit-perspective: 600; See example: Perspective 1. The red element on the left uses transform: perspective() functional notation; the blue element on the right uses the perspective property These two formats both trigger a 3-D space, but there is a difference. The first, functional notation is convenient for directly applying a 3-D transform on a single element (in the previous example, I use it in conjunction with a rotateY transform). But when used on multiple elements, the transformed elements don’t line up as expected. If you use the same transform across elements with different positions, each element will have its own vanishing point. To remedy this, use the perspective property on a parent element, so each child shares the same 3-D space. See Example: Perspective 2. Each red box on the left has its own vanishing point within the parent container; the blue boxes on the right share the vanishing point of the parent container The value of perspective determines the intensity of the 3-D effect. Think of it as a distance from the viewer to the object. The greater the value, the further the distance, so the less intense the visual effect. perspective: 2000; yields a subtle 3-D effect, as if we were viewing an object from far away. perspective: 100; produces a tremendous 3-D effect, like a tiny insect viewing a massive object. By default, the vanishing point for a 3-D space is positioned at its centre. You can change the position of the vanishing point with perspective-origin property. -webkit-perspective-origin: 25% 75%; See Example: Perspective 3. 3-D transform functions As a web designer, you’re probably well acquainted with working in two dimensions, X and Y, positioning items horizontally and vertically. With a 3-D space initialised with perspective, we can now transform elements in all three glorious spatial dimensions, including the third Z dimension, depth. 3-D transforms use the same transform property used for 2-D transforms. If you’re familiar with 2-D transforms, you’ll find the basic 3D transform functions fairly similar. rotateX(angle) rotateY(angle) rotateZ(angle) translateZ(tz) scaleZ(sz) Whereas translateX() positions an element along the horizontal X-axis, translateZ() positions it along the Z-axis, which runs front to back in 3-D space. Positive values position the element closer to the viewer, negative values further away. The rotate functions rotate the element around the corresponding axis. This is somewhat counter-intuitive at first, as you might imagine that rotateX will spin an object left to right. Instead, using rotateX(45deg) rotates an element around the horizontal X-axis, so the top of the element angles back and away, and the bottom gets closer to the viewer. See Example: Transforms 1. 3-D rotate() and translate() functions around each axis There are also several shorthand transform functions that require values for all three dimensions: translate3d(tx,ty,tz) scale3d(sx,sy,sz) rotate3d(rx,ry,rz,angle) Pro-tip: These foo3d() transform functions also have the benefit of triggering hardware acceleration in Safari. Dean Jackson, CSS 3-D transform spec author and main WebKit dude, writes (to Thomas Fuchs): In essence, any transform that has a 3D operation as one of its functions will trigger hardware compositing, even when the actual transform is 2D, or not doing anything at all (such as translate3d(0,0,0)). Note this is just current behaviour, and could change in the future (which is why we don’t document or encourage it). But it is very helpful in some situations and can significantly improve redraw performance. For the sake of simplicity, my demos will use the basic transform functions, but if you’re writing production-ready CSS for iOS or Safari-only, make sure to use the foo3d() functions to get the best rendering performance. Card flip We now have all the tools to start making 3-D objects. Let’s get started with something simple: flipping a card. Here’s the basic markup we’ll need: <section class="container"> <div id="card"> <figure class="front">1</figure> <figure class="back">2</figure> </div> </section> The .container will house the 3-D space. The #card acts as a wrapper for the 3-D object. Each face of the card has a separate element: .front; and .back. Even for such a simple object, I recommend using this same pattern for any 3-D transform. Keeping the 3-D space element and the object element(s) separate establishes a pattern that is simple to understand and easier to style. We’re ready for some 3-D stylin’. First, apply the necessary perspective to the parent 3-D space, along with any size or positioning styles. .container { width: 200px; height: 260px; position: relative; -webkit-perspective: 800; } Now the #card element can be transformed in its parent’s 3-D space. We’re combining absolute and relative positioning so the 3-D object is removed from the flow of the document. We’ll also add width: 100%; and height: 100%;. This ensures the object’s transform-origin will occur in the centre of .container. More on transform-origin later. Let’s add a CSS3 transition so users can see the transform take effect. #card { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; -webkit-transition: -webkit-transform 1s; } The .container’s perspective only applies to direct descendant children, in this case #card. In order for subsequent children to inherit a parent’s perspective, and live in the same 3-D space, the parent can pass along its perspective with transform-style: preserve-3d. Without 3-D transform-style, the faces of the card would be flattened with its parents and the back face’s rotation would be nullified. To position the faces in 3-D space, we’ll need to reset their positions in 2-D with position: absolute. In order to hide the reverse sides of the faces when they are faced away from the viewer, we use backface-visibility: hidden. #card figure { display: block; position: absolute; width: 100%; height: 100%; -webkit-backface-visibility: hidden; } To flip the .back face, we add a basic 3-D transform of rotateY(180deg). #card .front { background: red; } #card .back { background: blue; -webkit-transform: rotateY(180deg); } With the faces in place, the #card requires a corresponding style for when it is flipped. #card.flipped { -webkit-transform: rotateY(180deg); } Now we have a working 3-D object. To flip the card, we can toggle the flipped class. When .flipped, the #card will rotate 180 degrees, thus exposing the .back face. See Example: Card 1. Flipping a card in three dimensions Slide-flip Take another look at the Weather App 3-D transition. You’ll notice that it’s not quite the same effect as our previous demo. If you follow the right edge of the card, you’ll find that its corners stay within the container. Instead of pivoting from the horizontal centre, it pivots on that right edge. But the transition is not just a rotation – the edge moves horizontally from right to left. We can reproduce this transition just by modifying a couple of lines of CSS from our original card flip demo. The pivot point for the rotation occurs at the right side of the card. By default, the transform-origin of an element is at its horizontal and vertical centre (50% 50% or center center). Let’s change it to the right side: #card { -webkit-transform-origin: right center; } That flip now needs some horizontal movement with translateX. We’ll set the rotation to -180deg so it flips right side out. #card.flipped { -webkit-transform: translateX(-100%) rotateY(-180deg); } See Example: Card 2. Creating a slide-flip from the right edge of the card Cube Creating 3-D card objects is a good way to get started with 3-D transforms. But once you’ve mastered them, you’ll be hungry to push it further and create some true 3-D objects: prisms. We’ll start out by making a cube. The markup for the cube is similar to the card. This time, however, we need six child elements for all six faces of the cube: <section class="container"> <div id="cube"> <figure class="front">1</figure> <figure class="back">2</figure> <figure class="right">3</figure> <figure class="left">4</figure> <figure class="top">5</figure> <figure class="bottom">6</figure> </div> </section> Basic position and size styles set the six faces on top of one another in the container. .container { width: 200px; height: 200px; position: relative; -webkit-perspective: 1000; } #cube { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; } #cube figure { width: 196px; height: 196px; display: block; position: absolute; border: 2px solid black; } With the card, we only had to rotate its back face. The cube, however, requires that five of the six faces to be rotated. Faces 1 and 2 will be the front and back. Faces 3 and 4 will be the sides. Faces 5 and 6 will be the top and bottom. #cube .front { -webkit-transform: rotateY(0deg); } #cube .back { -webkit-transform: rotateX(180deg); } #cube .right { -webkit-transform: rotateY(90deg); } #cube .left { -webkit-transform: rotateY(-90deg); } #cube .top { -webkit-transform: rotateX(90deg); } #cube .bottom { -webkit-transform: rotateX(-90deg); } We could remove the first #cube .front style declaration, as this transform has no effect, but let’s leave it in to keep our code consistent. Now each face is rotated, and only the front face is visible. The four side faces are all perpendicular to the viewer, so they appear invisible. To push them out to their appropriate sides, they need to be translated out from the centre of their positions. Each side of the cube is 200 pixels wide. From the cube’s centre they’ll need to be translated out half that distance, 100px. #cube .front { -webkit-transform: rotateY(0deg) translateZ(100px); } #cube .back { -webkit-transform: rotateX(180deg) translateZ(100px); } #cube .right { -webkit-transform: rotateY(90deg) translateZ(100px); } #cube .left { -webkit-transform: rotateY(-90deg) translateZ(100px); } #cube .top { -webkit-transform: rotateX(90deg) translateZ(100px); } #cube .bottom { -webkit-transform: rotateX(-90deg) translateZ(100px); } Note here that the translateZ function comes after the rotate. The order of transform functions is important. Take a moment and soak this up. Each face is first rotated towards its position, then translated outward in a separate vector. We have a working cube, but we’re not done yet. Returning to the Z-axis origin For the sake of our users, our 3-D transforms should not distort the interface when the active panel is at its resting position. But once we start pushing elements off their Z-axis origin, distortion is inevitable. In order to keep 3-D transforms snappy, Safari composites the element, then applies the transform. Consequently, anti-aliasing on text will remain whatever it was before the transform was applied. When transformed forward in 3-D space, significant pixelation can occur. See Example: Transforms 2. Looking back at the Perspective 3 demo, note that no matter how small the perspective value is, or wherever the transform-origin may be, the panel number 1 always returns to its original position, as if all those funky 3-D transforms didn’t even matter. To resolve the distortion and restore pixel perfection to our #cube, we can push the 3-D object back, so that the front face will be positioned back to the Z-axis origin. #cube { -webkit-transform: translateZ(-100px); } See Example: Cube 1. Restoring the front face to the original position on the Z-axis Rotating the cube To expose any face of the cube, we’ll need a style that rotates the cube to expose any face. The transform values are the opposite of those for the corresponding face. We toggle the necessary class on the #box to apply the appropriate transform. #cube.show-front { -webkit-transform: translateZ(-100px) rotateY(0deg); } #cube.show-back { -webkit-transform: translateZ(-100px) rotateX(-180deg); } #cube.show-right { -webkit-transform: translateZ(-100px) rotateY(-90deg); } #cube.show-left { -webkit-transform: translateZ(-100px) rotateY(90deg); } #cube.show-top { -webkit-transform: translateZ(-100px) rotateX(-90deg); } #cube.show-bottom { -webkit-transform: translateZ(-100px) rotateX(90deg); } Notice how the order of the transform functions has reversed. First, we push the object back with translateZ, then we rotate it. Finishing up, we can add a transition to animate the rotation between states. #cube { -webkit-transition: -webkit-transform 1s; } See Example: Cube 2. Rotating the cube with a CSS transition Rectangular prism Cubes are easy enough to generate, as we only have to worry about one measurement. But how would we handle a non-regular rectangular prism? Let’s try to make one that’s 300 pixels wide, 200 pixels high, and 100 pixels deep. The markup remains the same as the #cube, but we’ll switch the cube id for #box. The container styles remain mostly the same: .container { width: 300px; height: 200px; position: relative; -webkit-perspective: 1000; } #box { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; } Now to position the faces. Each set of faces will need their own sizes. The smaller faces (left, right, top and bottom) need to be positioned in the centre of the container, where they can be easily rotated and then shifted outward. The thinner left and right faces get positioned left: 100px ((300 − 100) ÷ 2), The stouter top and bottom faces get positioned top: 50px ((200 − 100) ÷ 2). #box figure { display: block; position: absolute; border: 2px solid black; } #box .front, #box .back { width: 296px; height: 196px; } #box .right, #box .left { width: 96px; height: 196px; left: 100px; } #box .top, #box .bottom { width: 296px; height: 96px; top: 50px; } The rotate values can all remain the same as the cube example, but for this rectangular prism, the translate values do differ. The front and back faces are each shifted out 50 pixels since the #box is 100 pixels deep. The translate value for the left and right faces is 150 pixels for their 300 pixels width. Top and bottom panels take 100 pixels for their 200 pixels height: #box .front { -webkit-transform: rotateY(0deg) translateZ(50px); } #box .back { -webkit-transform: rotateX(180deg) translateZ(50px); } #box .right { -webkit-transform: rotateY(90deg) translateZ(150px); } #box .left { -webkit-transform: rotateY(-90deg) translateZ(150px); } #box .top { -webkit-transform: rotateX(90deg) translateZ(100px); } #box .bottom { -webkit-transform: rotateX(-90deg) translateZ(100px); } See Example: Box 1. Just like the cube example, to expose a face, the #box needs to have a style to reverse that face’s transform. Both the translateZ and rotate values are the opposites of the corresponding face. #box.show-front { -webkit-transform: translateZ(-50px) rotateY(0deg); } #box.show-back { -webkit-transform: translateZ(-50px) rotateX(-180deg); } #box.show-right { -webkit-transform: translateZ(-150px) rotateY(-90deg); } #box.show-left { -webkit-transform: translateZ(-150px) rotateY(90deg); } #box.show-top { -webkit-transform: translateZ(-100px) rotateX(-90deg); } #box.show-bottom { -webkit-transform: translateZ(-100px) rotateX(90deg); } See Example: Box 2. Rotating the rectangular box with a CSS transition Carousel Front-end developers have a myriad of choices when it comes to content carousels. Now that we have 3-D capabilities in our browsers, why not take a shot at creating an actual 3-D carousel? The markup for this demo takes the same form as the box, cube and card. Let’s make it interesting and have a carousel with nine panels. <div class="container"> <div id="carousel"> <figure>1</figure> <figure>2</figure> <figure>3</figure> <figure>4</figure> <figure>5</figure> <figure>6</figure> <figure>7</figure> <figure>8</figure> <figure>9</figure> </div> </div> Now, apply basic layout styles. Let’s give each panel of the #carousel 20 pixel gaps between one another, done here with left: 10px; and top: 10px;. The effective width of each panel is 210 pixels. .container { width: 210px; height: 140px; position: relative; -webkit-perspective: 1000; } #carousel { width: 100%; height: 100%; position: absolute; -webkit-transform-style: preserve-3d; } #carousel figure { display: block; position: absolute; width: 186px; height: 116px; left: 10px; top: 10px; border: 2px solid black; } Next up: rotating the faces. This #carousel has nine panels. If each panel gets an equal distribution on the carousel, each panel would be rotated forty degrees from its neighbour (360 ÷ 9). #carousel figure:nth-child(1) { -webkit-transform: rotateY(0deg); } #carousel figure:nth-child(2) { -webkit-transform: rotateY(40deg); } #carousel figure:nth-child(3) { -webkit-transform: rotateY(80deg); } #carousel figure:nth-child(4) { -webkit-transform: rotateY(120deg); } #carousel figure:nth-child(5) { -webkit-transform: rotateY(160deg); } #carousel figure:nth-child(6) { -webkit-transform: rotateY(200deg); } #carousel figure:nth-child(7) { -webkit-transform: rotateY(240deg); } #carousel figure:nth-child(8) { -webkit-transform: rotateY(280deg); } #carousel figure:nth-child(9) { -webkit-transform: rotateY(320deg); } Now, the outward shift. Back when we were creating the cube and box, the translate value was simple to calculate, as it was equal to one half the width, height or depth of the object. With this carousel, there is no size we can automatically use as a reference. We’ll have to calculate the distance of the shift by other means. Drawing a diagram of the carousel, we can see that we know only two things: the width of each panel is 210 pixels; and the each panel is rotated forty degrees from the next. If we split one of these segments down its centre, we get a right-angled triangle, perfect for some trigonometry. We can determine the length of r in this diagram with a basic tangent equation: There you have it: the panels need to be translated 288 pixels in 3-D space. #carousel figure:nth-child(1) { -webkit-transform: rotateY(0deg) translateZ(288px); } #carousel figure:nth-child(2) { -webkit-transform: rotateY(40deg) translateZ(288px); } #carousel figure:nth-child(3) { -webkit-transform: rotateY(80deg) translateZ(288px); } #carousel figure:nth-child(4) { -webkit-transform: rotateY(120deg) translateZ(288px); } #carousel figure:nth-child(5) { -webkit-transform: rotateY(160deg) translateZ(288px); } #carousel figure:nth-child(6) { -webkit-transform: rotateY(200deg) translateZ(288px); } #carousel figure:nth-child(7) { -webkit-transform: rotateY(240deg) translateZ(288px); } #carousel figure:nth-child(8) { -webkit-transform: rotateY(280deg) translateZ(288px); } #carousel figure:nth-child(9) { -webkit-transform: rotateY(320deg) translateZ(288px); } If we decide to change the width of the panel or the number of panels, we only need to plug in those two variables into our equation to get the appropriate translateZ value. In JavaScript terms, that equation would be: var tz = Math.round( ( panelSize / 2 ) / Math.tan( ( ( Math.PI * 2 ) / numberOfPanels ) / 2 ) ); // or simplified to var tz = Math.round( ( panelSize / 2 ) / Math.tan( Math.PI / numberOfPanels ) ); Just like our previous 3-D objects, to show any one panel we need only apply the reverse transform on the carousel. Here’s the style to show the fifth panel: -webkit-transform: translateZ(-288px) rotateY(-160deg); See Example: Carousel 1. By now, you probably have two thoughts: Rewriting transform styles for each panel looks tedious. Why bother doing high school maths? Aren’t robots supposed to be doing all this work for us? And you’re absolutely right. The repetitive nature of 3-D objects lends itself to scripting. We can offload all the monotonous transform styles to our dynamic script, which, if done correctly, will be more flexible than the hard-coded version. See Example: Carousel 2. Conclusion 3-D transforms change the way we think about the blank canvas of web design. Better yet, they change the canvas itself, trading in the flat surface for voluminous depth. My hope is that you took at least one peak at a demo and were intrigued. We web designers, who have rejoiced for border-radius, box-shadow and background gradients, now have an incredible tool at our disposal in 3-D transforms. They deserve just the same enthusiasm, research and experimentation we have seen on other CSS3 features. Now is the perfect time to take the plunge and start thinking about how to use three dimensions to elevate our craft. I’m breathless waiting for what’s to come. See you on the flip side. 2010 David DeSandro daviddesandro 2010-12-14T00:00:00+00:00 https://24ways.org/2010/intro-to-css-3d-transforms/ code
238 Everything You Wanted To Know About Gradients (And a Few Things You Didn’t) Hello. I am here to discuss CSS3 gradients. Because, let’s face it, what the web really needed was more gradients. Still, despite their widespread use (or is it overuse?), the smartly applied gradient can be a valuable contributor to a designer’s vocabulary. There’s always been a tension between the inherently two-dimensional nature of our medium, and our desire for more intensity, more depth in our designs. And a gradient can evoke so much: the splay of light across your desk, the slow decrease in volume toward the end of your favorite song, the sunset after a long day. When properly applied, graded colors bring a much needed softness to our work. Of course, that whole ‘proper application’ thing is the tricky bit. But given their place in our toolkit and their prominence online, it really is heartening to see we can create gradients directly with CSS. They’re part of the draft images module, and implemented in two of the major rendering engines. Still, I’ve always found CSS gradients to be one of the more confusing aspects of CSS3. So if you’ll indulge me, let’s take a quick look at how to create CSS gradients—hopefully we can make them seem a bit more accessible, and bring a bit more art into the browser. Gradient theory 101 (I hope that’s not really a thing) Right. So before we dive into the code, let’s cover a few basics. Every gradient, no matter how complex, shares a few common characteristics. Here’s a straightforward one: I spent seconds hours designing this gradient. I hope you like it. At either end of our image, we have a final color value, or color stop: on the left, our stop is white; on the right, black. And more color-rich gradients are no different: (Don’t ever really do this. Please. I beg you.) It’s visually more intricate, sure. But at the heart of it, we have just seven color stops (red, orange, yellow, and so on), making for a fantastic gradient all the way. Now, color stops alone do not a gradient make. Between each is a transition point, the fail-over point between the two stops. Now, the transition point doesn’t need to fall exactly between stops: it can be brought closer to one stop or the other, influencing the overall shape of the gradient. A tale of two syntaxes Armed with our new vocabulary, let’s look at a CSS gradient in the wild. Behold, the simple input button: There’s a simple linear gradient applied vertically across the button, moving from a bright sunflowerish hue (#FAA51A, for you hex nuts in the audience) to a much richer orange (#F47A20). And here’s the CSS that makes it happen: input[type=submit] { background-color: #F47A20; background-image: -moz-linear-gradient( #FAA51A, #F47A20 ); background-image: -webkit-gradient(linear, 0 0, 0 100%, color-stop(0, #FAA51A), color-stop(1, #F47A20) ); } I’ve borrowed David DeSandro’s most excellent formatting suggestions for gradients to make this snippet a bit more legible but, still, the code above might have turned your stomach a bit. And that’s perfectly understandable—heck, it sort of turned mine. But let’s step through the CSS slowly, and see if we can’t make it a little less terrifying. Verbose WebKit is verbose Here’s the syntax for our little gradient on WebKit: background-image: -webkit-gradient(linear, 0 0, 0 100%, color-stop(0, #FAA51A), color-stop(1, #F47A20) ); Woof. Quite a mouthful, no? Well, here’s what we’re looking at: WebKit has a single -webkit-gradient property, which can be used to create either linear or radial gradients. The next two values are the starting and ending positions for our gradient (0 0 and 0 100%, respectively). Linear gradients are simply drawn along the path between those two points, which allows us to change the direction of our gradient simply by altering its start and end points. Afterward, we specify our color stops with the oh-so-aptly named color-stop parameter, which takes the stop’s position on the gradient (0 being the beginning, and 100% or 1 being the end) and the color itself. For a simple two-color gradient like this, -webkit-gradient has a bit of shorthand notation to offer us: background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#FAA51A), to(#FAA51A) ); from(#FAA51A) is equivalent to writing color-stop(0, #FAA51A), and to(#FAA51A) is the same as color-stop(1, #FAA51A) or color-stop(100%, #FAA51A)—in both cases, we’re simply declaring the first and last color stops in our gradient. Terse Gecko is terse WebKit proposed its syntax back in 2008, heavily inspired by the way gradients are drawn in the canvas specification. However, a different, leaner syntax came to the fore, eventually appearing in a draft module specification in CSS3. Naturally, because nothing on the web was meant to be easy, this is the one that Mozilla has implemented. Here’s how we get gradient-y in Gecko: background-image: -moz-linear-gradient( #FAA51A, #F47A20 ); Wait, what? Done already? That’s right. By default, -moz-linear-gradient assumes you’re trying to create a vertical gradient, starting from the top of your element and moving to the bottom. And, if that’s the case, then you simply need to specify your color stops, delimited with a few commas. I know: that was almost… painless. But the W3C/Mozilla syntax also affords us a fair amount of flexibility and control, by introducing features as we need them. We can specify an origin point for our gradient: background-image: -moz-linear-gradient(50% 100%, #FAA51A, #F47A20 ); As well as an angle, to give it a direction: background-image: -moz-linear-gradient(50% 100%, 45deg, #FAA51A, #F47A20 ); And we can specify multiple stops, simply by adding to our comma-delimited list: background-image: -moz-linear-gradient(50% 100%, 45deg, #FAA51A, #FCC, #F47A20 ); By adding a percentage after a given color value, we can determine its position along the gradient path: background-image: -moz-linear-gradient(50% 100%, 45deg, #FAA51A, #FCC 20%, #F47A20 ); So that’s some of the flexibility implicit in the W3C/Mozilla-style syntax. Now, I should note that both syntaxes have their respective fans. I will say that the W3C/Mozilla-style syntax makes much more sense to me, and lines up with how I think about creating gradients. But I can totally understand why some might prefer WebKit’s more verbose approach to the, well, looseness behind the -moz syntax. À chacun son gradient syntax. Still, as the language gets refined by the W3C, I really hope some consensus is reached by the browser vendors. And with Opera signaling that it will support the W3C syntax, I suppose it falls on WebKit to do the same. Reusing color stops for fun and profit But CSS gradients aren’t all simple colors and shapes and whatnot: by getting inventive with individual color stops, you can create some really complex, compelling effects. Tim Van Damme, whose brain, I believe, should be posthumously donated to science, has a particularly clever application of gradients on The Box, a site dedicated to his occasional podcast series. Now, there are a fair number of gradients applied throughout the UI, but it’s the feature image that really catches the eye. You see, there’s nothing that says you can’t reuse color stops. And Tim’s exploited that perfectly. He’s created a linear gradient, angled at forty-five degrees from the top left corner of the photo, starting with a fully transparent white (rgba(255, 255, 255, 0)). At the halfway mark, he’s established another color stop at an only slightly more opaque white (rgba(255, 255, 255, 0.1)), making for that incredibly gradual brightening toward the middle of the photo. But then he has set another color stop immediately on top of it, bringing it back down to rgba(255, 255, 255, 0) again. This creates that fantastically hard edge that diagonally bisects the photo, giving the image that subtle gloss. And his final color stop ends at the same fully transparent white, completing the effect. Hot? I do believe so. Rocking the radials We’ve been looking at linear gradients pretty exclusively. But I’d be remiss if I didn’t at least mention radial gradients as a viable option, including a modest one as a link accent on a navigation bar: And here’s the relevant CSS: background: -moz-radial-gradient(50% 100%, farthest-side, rgb(204, 255, 255) 1%, rgb(85, 85, 85) 15%, rgba(85, 85, 85, 0) ); background: -webkit-gradient(radial, 50% 100%, 0, 50% 100%, 15, from(rgb(204, 255, 255)), to(rgba(85, 85, 85, 0)) ); Now, the syntax builds on what we’ve already learned about linear gradients, so much of it might be familiar to you, picking out color stops and transition points, as well as the two syntaxes’ reliance on either a separate property (-moz-radial-gradient) or parameter (-webkit-gradient(radial, …)) to shift into circular mode. Mozilla introduces another stand-alone property (-moz-radial-gradient), and accepts a starting point (50% 100%) from which the circle radiates. There’s also a size constant defined (farthest-side), which determines the reach and shape of our gradient. WebKit is again the more verbose of the two syntaxes, requiring both starting and ending points (50% 100% in both cases). Each also accepts a radius in pixels, allowing you to control the skew and breadth of the circle. Again, this is a fairly modest little radial gradient. Time and article length (and, let’s be honest, your author’s completely inadequate grasp of geometry) prevent me from covering radial gradients in much more detail, because they are incredibly powerful. For those interested in learning more, I can’t recommend the references at Mozilla and Apple strongly enough. Leave no browser behind But no matter the kind of gradients you’re working with, there is a large swathe of browsers that simply don’t support gradients. Thankfully, it’s fairly easy to declare a sensible fallback—it just depends on the kind of fallback you’d like. Essentially, gradient-blind browsers will disregard any properties containing references to either -moz-linear-gradient, -moz-radial-gradient, or -webkit-gradient, so you simply need to keep your fallback isolated from those properties. For example: if you’d like to fall back to a flat color, simply declare a separate background-color: .nav { background-color: #000; background-image: -moz-linear-gradient(rgba(0, 0, 0, 0), rgba(255, 255, 255, 0.45)); background-image: -webkit-gradient(linear, 0 0, 0 100%, from(rgba(0, 0, 0, 0)), to(rgba(255, 255, 255, 0.45))); } Or perhaps just create three separate background properties. .nav { background: #000; background: #000 -moz-linear-gradient(rgba(0, 0, 0, 0), rgba(255, 255, 255, 0.45)); background: #000 -webkit-gradient(linear, 0 0, 0 100%, from(rgba(0, 0, 0, 0)), to(rgba(255, 255, 255, 0.45))); } We can even build on this to fall back to a non-gradient image: .nav { background: #000 <strong>url("faux-gradient-lol.png") repeat-x</strong>; background: #000 -moz-linear-gradient(rgba(0, 0, 0, 0), rgba(255, 255, 255, 0.45)); background: #000 -webkit-gradient(linear, 0 0, 0 100%, from(rgba(0, 0, 0, 0)), to(rgba(255, 255, 255, 0.45))); } No matter the approach you feel most appropriate to your design, it’s really just a matter of keeping your fallback design quarantined from its CSS3-ified siblings. (If you’re feeling especially masochistic, there’s even a way to get simple linear gradients working in IE via Microsoft’s proprietary filters. Of course, those come with considerable performance penalties that even Microsoft is quick to point out, so I’d recommend avoiding those. And don’t tell Andy Clarke I told you, or he’ll probably unload his Derringer at me. Or something.) Go forth and, um, gradientify! It’s entirely possible your head’s spinning. Heck, mine is, but that might be the effects of the ’nog. But maybe you’re wondering why you should care about CSS gradients. After all, images are here right now, and work just fine. Well, there are some quick benefits that spring to mind: fewer HTTP requests are needed; CSS3 gradients are easily made scalable, making them ideal for variable widths and heights; and finally, they’re easily modifiable by tweaking a few CSS properties. Because, let’s face it, less time spent yelling at Photoshop is a very, very good thing. Of course, CSS-generated gradients are not without their drawbacks. The syntax can be confusing, and it’s still under development at the W3C. As we’ve seen, browser support is still very much in flux. And it’s possible that gradients themselves have some real performance drawbacks—so test thoroughly, and gradient carefully. But still, as syntaxes converge, and support improves, I think generated gradients can make a compelling tool in our collective belts. The tasteful design is, of course, entirely up to you. So have fun, and get gradientin’. 2010 Ethan Marcotte ethanmarcotte 2010-12-22T00:00:00+00:00 https://24ways.org/2010/everything-you-wanted-to-know-about-gradients/ code
240 My CSS Wish List I love Christmas. I love walking around the streets of London, looking at the beautifully decorated windows, seeing the shiny lights that hang above Oxford Street and listening to Christmas songs. I’m not going to lie though. Not only do I like buying presents, I love receiving them too. I remember making long lists that I would send to Father Christmas with all of the Lego sets I wanted to get. I knew I could only get one a year, but I would spend days writing the perfect list. The years have gone by, but I still enjoy making wish lists. And I’ll tell you a little secret: my mum still asks me to send her my Christmas list every year. This time I’ve made my CSS wish list. As before, I’d be happy with just one present. Before I begin… … this list includes: things that don’t exist in the CSS specification (if they do, please let me know in the comments – I may have missed them); others that are in the spec, but it’s incomplete or lacks use cases and examples (which usually means that properties haven’t been implemented by even the most recent browsers). Like with any other wish list, the further down I go, the more unrealistic my expectations – but that doesn’t mean I can’t wish. Some of the things we wouldn’t have thought possible a few years ago have been implemented and our wishes fulfilled (think multiple backgrounds, gradients and transformations, for example). The list Cross-browser implementation of font-size-adjust When one of the fall-back fonts from your font stack is used, rather than the preferred (first) one, you can retain the aspect ratio by using this very useful property. It is incredibly helpful when the fall-back fonts are smaller or larger than the initial one, which can make layouts look less polished. What font-size-adjust does is divide the original font-size of the fall-back fonts by the font-size-adjust value. This preserves the x-height of the preferred font in the fall-back fonts. Here’s a simple example: p { font-family: Calibri, "Lucida Sans", Verdana, sans-serif; font-size-adjust: 0.47; } In this case, if the user doesn’t have Calibri installed, both Lucida Sans and Verdana will keep Calibri’s aspect ratio, based on the font’s x-height. This property is a personal favourite and one I keep pointing to. Firefox supported this property from version three. So far, it’s the only browser that does. Fontdeck provides the font-size-adjust value along with its fonts, and has a handy tool for calculating it. More control over overflowing text The text-overflow property lets you control text that overflows its container. The most common use for it is to show an ellipsis to indicate that there is more text than what is shown. To be able to use it, the container should have overflow set to something other than visible, and white-space: nowrap: div { white-space: nowrap; width: 100%; overflow: hidden; text-overflow: ellipsis; } This, however, only works for blocks of text on a single line. In the wish list of many CSS authors (and in mine) is a way of defining text-overflow: ellipsis on a block of multiple text lines. Opera has taken the first step and added support for the -o-ellipsis-lastline property, which can be used instead of ellipsis. This property is not part of the CSS3 spec, but we could certainly make good use of it if it were… WebKit has -webkit-line-clamp to specify how many lines to show before cutting with an ellipsis, but support is patchy at best and there is no control over where the ellipsis shows in the text. Many people have spent time wrangling JavaScript to do this for us, but the methods used are very processor intensive, and introduce a JavaScript dependency. Indentation and hanging punctuation properties You might notice a trend here: almost half of the items in this list relate to typography. The lack of fine-grained control over typographical detail is a general concern among designers and CSS authors. Indentation and hanging punctuation fall into this category. The CSS3 specification introduces two new possible values for the text-indent property: each-line; and hanging. each-line would indent the first line of the block container and each line after a forced line break; hanging would invert which lines are affected by the indentation. The proposed hanging-punctuation property would allow us to specify whether opening and closing brackets and quotes should hang outside the edge of the first and last lines. The specification is still incomplete, though, and asks for more examples and use cases. Text alignment and hyphenation properties Following the typographic trend of this list, I’d like to add better control over text alignment and hyphenation properties. The CSS3 module on Generated Content for Paged Media already specifies five new hyphenation-related properties (namely: hyphenate-dictionary; hyphenate-before and hyphenate-after; hyphenate-lines; and hyphenate-character), but it is still being developed and lacks examples. In the text alignment realm, the new text-align-last property allows you to define how the last line of a block (or a line just before a forced break) is aligned, if your text is set to justify. Its value can be: start; end; left; right; center; and justify. The text-justify property should also allow you to have more control over text set to text-align: justify but, for now, only Internet Explorer supports this. calc() This is probably my favourite item in the list: the calc() function. This function is part of the CSS3 Values and Units module, but it has only been implemented by Firefox (4.0). To take advantage of it now you need to use the Mozilla vendor code, -moz-calc(). Imagine you have a fluid two-column layout where the sidebar column has a fixed width of 240 pixels, and the main content area fills the rest of the width available. This is how you could create that using -moz-calc(): #main { width: -moz-calc(100% - 240px); } Can you imagine how many hacks and headaches we could avoid were this function available in more browsers? Transitions and animations are really nice and lovely but, for me, it’s the ability to do the things that calc() allows you to that deserves the spotlight and to be pushed for implementation. Selector grouping with -moz-any() The -moz-any() selector grouping has been introduced by Mozilla but it’s not part of any CSS specification (yet?); it’s currently only available on Firefox 4. This would be especially useful with the way HTML5 outlines documents, where we can have any number of variations of several levels of headings within numerous types of containers (think sections within articles within sections…). Here is a quick example (copied from the Mozilla blog post about the article) of how -moz-any() works. Instead of writing: section section h1, section article h1, section aside h1, section nav h1, article section h1, article article h1, article aside h1, article nav h1, aside section h1, aside article h1, aside aside h1, aside nav h1, nav section h1, nav article h1, nav aside h1, nav nav h1, { font-size: 24px; } You could simply write: -moz-any(section, article, aside, nav) -moz-any(section, article, aside, nav) h1 { font-size: 24px; } Nice, huh? More control over styling form elements Some are of the opinion that form elements shouldn’t be styled at all, since a user might not recognise them as such if they don’t match the operating system’s controls. I partially agree: I’d rather put the choice in the hands of designers and expect them to be capable of deciding whether their particular design hampers or improves usability. I would say the same idea applies to font-face: while some fear designers might go crazy and litter their web pages with dozens of different fonts, most welcome the freedom to use something other than Arial or Verdana. There will always be someone who will take this freedom too far, but it would be useful if we could, for example, style the default Opera date picker: <input type="date" /> or Safari’s slider control (think star movie ratings, for example): <input type="range" min="0" max="5" step="1" value="3" /> Parent selector I don’t think there is one CSS author out there who has never come across a case where he or she wished there was a parent selector. There have been many suggestions as to how this could work, but a variation of the child selector is usually the most popular: article < h1 { … } One can dream… Flexible box layout The Flexible Box Layout Module sounds a bit like magic: it introduces a new box model to CSS, allowing you to distribute and order boxes inside other boxes, and determine how the available space is shared. Two of my favourite features of this new box model are: the ability to redistribute boxes in a different order from the markup the ability to create flexible layouts, where boxes shrink (or expand) to fill the available space Let’s take a quick look at the second case. Imagine you have a three-column layout, where the first column takes up twice as much horizontal space as the other two: <body> <section id="main"> </section> <section id="links"> </section> <aside> </aside> </body> With the flexible box model, you could specify it like this: body { display: box; box-orient: horizontal; } #main { box-flex: 2; } #links { box-flex: 1; } aside { box-flex: 1; } If you decide to add a fourth column to this layout, there is no need to recalculate units or percentages, it’s as easy as that. Browser support for this property is still in its early stages (Firefox and WebKit need their vendor prefixes), but we should start to see it being gradually introduced as more attention is drawn to it (I’m looking at you…). You can read a more comprehensive write-up about this property on the Mozilla developer blog. It’s easy to understand why it’s harder to start playing with this module than with things like animations or other more decorative properties, which don’t really break your layouts when users don’t see them. But it’s important that we do, even if only in very experimental projects. Nested selectors Anyone who has never wished they could do something like the following in CSS, cast the first stone: article { h1 { font-size: 1.2em; } ul { margin-bottom: 1.2em; } } Even though it can easily turn into a specificity nightmare and promote redundancy in your style sheets (if you abuse it), it’s easy to see how nested selectors could be useful. CSS compilers such as Less or Sass let you do this already, but not everyone wants or can use these compilers in their projects. Every wish list has an item that could easily be dropped. In my case, I would say this is one that I would ditch first – it’s the least useful, and also the one that could cause more maintenance problems. But it could be nice. Implementation of the ::marker pseudo-element The CSS Lists module introduces the ::marker pseudo-element, that allows you to create custom list item markers. When an element’s display property is set to list-item, this pseudo-element is created. Using the ::marker pseudo-element you could create something like the following: Footnote 1: Both John Locke and his father, Anthony Cooper, are named after 17th- and 18th-century English philosophers; the real Anthony Cooper was educated as a boy by the real John Locke. Footnote 2: Parts of the plane were used as percussion instruments and can be heard in the soundtrack. where the footnote marker is generated by the following CSS: li::marker { content: "Footnote " counter(notes) ":"; text-align: left; width: 12em; } li { counter-increment: notes; } You can read more about how to use counters in CSS in my article from last year. Bear in mind that the CSS Lists module is still a Working Draft and is listed as “Low priority”. I did say this wish list would start to grow more unrealistic closer to the end… Variables The sight of the word ‘variables’ may make some web designers shy away, but when you think of them applied to things such as repeated colours in your stylesheets, it’s easy to see how having variables available in CSS could be useful. Think of a website where the main brand colour is applied to elements like the main text, headings, section backgrounds, borders, and so on. In a particularly large website, where the colour is repeated countless times in the CSS and where it’s important to keep the colour consistent, using variables would be ideal (some big websites are already doing this by using server-side technology). Again, Less and Sass allow you to use variables in your CSS but, again, not everyone can (or wants to) use these. If you are using Less, you could, for instance, set the font-family value in one variable, and simply call that variable later in the code, instead of repeating the complete font stack, like so: @fontFamily: Calibri, "Lucida Grande", "Lucida Sans Unicode", Helvetica, Arial, sans-serif; body { font-family: @fontFamily; } Other features of these CSS compilers might also be useful, like the ability to ‘call’ a property value from another selector (accessors): header { background: #000000; } footer { background: header['background']; } or the ability to define functions (with arguments), saving you from writing large blocks of code when you need to write something like, for example, a CSS gradient: .gradient (@start:"", @end:"") { background: -webkit-gradient(linear, left top, left bottom, from(@start), to(@end)); background: -moz-linear-gradient(-90deg,@start,@end); } button { .gradient(#D0D0D0,#9F9F9F); } Standardised comments Each CSS author has his or her own style for commenting their style sheets. While this isn’t a massive problem on smaller projects, where maybe only one person will edit the CSS, in larger scale projects, where dozens of hands touch the code, it would be nice to start seeing a more standardised way of commenting. One attempt at creating a standard for CSS comments is CSSDOC, an adaptation of Javadoc (a documentation generator that extracts comments from Java source code into HTML). CSSDOC uses ‘DocBlocks’, a term borrowed from the phpDocumentor Project. A DocBlock is a human- and machine-readable block of data which has the following structure: /** * Short description * * Long description (this can have multiple lines and contain <p> tags * * @tags (optional) */ CSSDOC includes a standard for documenting bug fixes and hacks, colours, versioning and copyright information, amongst other important bits of data. I know this isn’t a CSS feature request per se; rather, it’s just me pointing you at something that is usually overlooked but that could contribute towards keeping style sheets easier to maintain and to hand over to new developers. Final notes I understand that if even some of these were implemented in browsers now, it would be a long time until all vendors were up to speed. But if we don’t talk about them and experiment with what’s available, then it will definitely never happen. Why haven’t I mentioned better browser support for existing CSS3 properties? Because that would be the same as adding chocolate to your Christmas wish list – you don’t need to ask, everyone knows you want it. The list could go on. There are dozens of other things I would love to see integrated in CSS or further developed. These are my personal favourites: some might be less useful than others, but I’ve wished for all of them at some point. Part of the research I did while writing this article was asking some friends what they would add to their lists; other than a couple of items I already had in mine, everything else was different. I’m sure your list would be different too. So tell me, what’s on your CSS wish list? 2010 Inayaili de León Persson inayailideleon 2010-12-03T00:00:00+00:00 https://24ways.org/2010/my-css-wish-list/ code
241 Jank-Free Image Loads There are a few fundamental problems with embedding images in pages of hypertext; perhaps chief among them is this: text is very light and loads rather fast; images are much heavier and arrive much later. Consequently, millions (billions?) of times a day, a hapless Web surfer will start reading some text on a page, and then — Your browser doesn’t support HTML5 video. Here is a link to the video instead. — oops! — an image pops in above it, pushing said text down the page, and our poor reader loses their place. By default, partially-loaded pages have the user experience of a slippery fish, or spilled jar of jumping beans. For the rest of this article, I shall call that jarring, no-good jumpiness by its name: jank. And I’ll chart a path into a jank-free future – one in which it’s easy and natural to author <img> elements that load like this: Your browser doesn’t support HTML5 video. Here is a link to the video instead. Jank is a very old problem, and there is a very old solution to it: the width and height attributes on <img>. The idea is: if we stick an image’s dimensions right into the HTML, browsers can know those dimensions before the image loads, and reserve some space on the layout for it so that nothing gets bumped down the page when the image finally arrives. width Specifies the intended width of the image in pixels. When given together with the height, this allows user agents to reserve screen space for the image before the image data has arrived over the network. —The HTML 3.2 Specification, published on January 14 1997 Unfortunately for us, when width and height were first spec’d and implemented, layouts were largely fixed and images were usually only intended to render at their fixed, actual dimensions. When image sizing gets fluid, width and height get weird: See the Pen fluid width + fixed height = distortion by Eric Portis (@eeeps) on CodePen. width and height are too rigid for the responsive world. What we need, and have needed for a very long time, is a way to specify fixed aspect ratios, to pair with our fluid widths. I have good news, bad news, and great news. The good news is, there are ways to do this, now, that work in every browser. Responsible sites, and responsible developers, go through the effort to do them. The bad news is that these techniques are all terrible, cumbersome hacks. They’re difficult to remember, difficult to understand, and they can interact with other pieces of CSS in unexpected ways. So, the great news: there are two on-the-horizon web platform features that are trying to make no-jank, fixed-aspect-ratio, fluid-width images a natural part of the web platform. aspect-ratio in CSS The first proposed feature? An aspect-ratio property in CSS! This would allow us to write CSS like this: img { width: 100%; } .thumb { aspect-ratio: 1/1; } .hero { aspect-ratio: 16/9; } This’ll work wonders when we need to set aspect ratios for whole classes of images, which are all sized to fit within pre-defined layout slots, like the .thumb and .hero images, above. Alas, the harder problem, in my experience, is not images with known-ahead-of-time aspect ratios. It’s images – possibly user generated images – that can have any aspect ratio. The really tricky problem is unknown-when-you’re-writing-your-CSS aspect ratios that can vary per-image. Using aspect-ratio to reserve space for images like this requires inline styles: <img src="image.jpg" style="aspect-ratio: 5/4" /> And inline styles give me the heebie-jeebies! As a web developer of a certain age, I have a tiny man in a blue beanie permanently embedded deep within my hindbrain, who cries out in agony whenever I author a style="" attribute. And you know what? The old man has a point! By sticking super-high-specificity inline styles in my content, I’m cutting off my, (or anyone else’s) ability to change those aspect ratios, for whatever reason, later. How might we specify aspect ratios at a lower level? How might we give browsers information about an image’s dimensions, without giving them explicit instructions about how to style it? I’ll tell you: we could give browsers the intrinsic aspect ratio of the image in our HTML, rather than specifying an extrinsic aspect ratio! A brief note on intrinsic and extrinsic sizing What do I mean by “intrinsic” and “extrinsic?” The intrinsic size of an image is, put simply, how big it’d be if you plopped it onto a page and applied no CSS to it whatsoever. An 800×600 image has an intrinsic width of 800px. The extrinsic size of an image, then, is how large it ends up after CSS has been applied. Stick a width: 300px rule on that same 800×600 image, and its intrinsic size (accessible via the Image.naturalWidth property, in JavaScript) doesn’t change: its intrinsic size is still 800px. But this image now has an extrinsic size (accessible via Image.clientWidth) of 300px. It surprised me to learn this year that height and width are interpreted as presentational hints and that they end up setting extrinsic dimensions (albeit ones that, unlike inline styles, have absolutely no specificity). CSS aspect-ratio lets us avoid setting extrinsic heights and widths – and instead lets us give images (or anything else) an extrinsic aspect ratio, so that as soon as we set one dimension (possibly to a fluid width, like 100%!), the other dimension is set automatically in relation to it. The last tool I’m going to talk about gets us out of the extrinsic sizing game all together — which, I think, is only appropriate for a feature that we’re going to be using in HTML. intrinsicsize in HTML The proposed intrinsicsize attribute will let you do this: <img src="image.jpg" intrinsicsize="800x600" /> That tells the browser, “hey, this image.jpg that I’m using here – I know you haven’t loaded it yet but I’m just going to let you know right away that it’s going to have an intrinsic size of 800×600.” This gives the browser enough information to reserve space on the layout for the image, and ensures that any and all extrinsic sizing instructions, specified in our CSS, will layer cleanly on top of this, the image’s intrinsic size. You may ask (I did!): wait, what if my <img> references multiple resources, which all have different intrinsic sizes? Well, if you’re using srcset, intrinsicsize is a bit of a misnomer – what the attribute will do then, is specify an intrinsic aspect ratio: <img srcset="300x200.jpg 300w, 600x400.jpg 600w, 900x600.jpg 900w, 1200x800.jpg 1200w" sizes="75vw" intrinsicsize="3x2" /> In the future (and behind the “Experimental Web Platform Features” flag right now, in Chrome 71+), asking this image for its .naturalWidth would not return 3 – it will return whatever 75vw is, given the current viewport width. And Image.naturalHeight will return that width, divided by the intrinsic aspect ratio: 3/2. Can’t wait I seem to have gotten myself into the weeds a bit. Sizing on the web is complicated! Don’t let all of these details bury the big takeaway here: sometime soon (🤞 2019‽ 🤞), we’ll be able to toss our terrible aspect-ratio hacks into the dustbin of history, get in the habit of setting aspect-ratios in CSS and/or intrinsicsizes in HTML, and surf a less-frustrating, more-performant, less-janky web. I can’t wait! 2018 Eric Portis ericportis 2018-12-21T00:00:00+00:00 https://24ways.org/2018/jank-free-image-loads/ code
243 Researching a Property in the CSS Specifications I frequently joke that I’m “reading the specs so you don’t have to”, as I unpack some detail of a CSS spec in a post on my blog, some documentation for MDN, or an article on Smashing Magazine. However waiting for someone like me to write an article about something is a pretty slow way to get the information you need. Sometimes people like me get things wrong, or specifications change after we write a tutorial. What if you could just look it up yourself? That’s what you get when you learn to read the CSS specifications, and in this article my aim is to give you the basic details you need to grab quick information about any CSS property detailed in the CSS specs. Where are the CSS Specifications? The easiest way to see all of the CSS specs is to take a look at the Current Work page in the CSS section of the W3C Website. Here you can see all of the specifications listed, the level they are at and their status. There is also a link to the specification from this page. I explained CSS Levels in my article Why there is no CSS 4. Who are the specifications for? CSS specifications are for everyone who uses CSS. You might be a browser engineer - referred to as an implementor - needing to know how to implement a feature, or a web developer - referred to as an author - wanting to know how to use the feature. The fact that both parties are looking at the same document hopefully means that what the browser displays is what the web developer expected. Which version of a spec should I look at? There are a couple of places you might want to look. Each published spec will have the latest published version, which will have TR in the URL and can be accessed without a date (which is always the newest version) or at a date, which will be the date of that publication. If I’m referring to a particular Working Draft in an article I’ll typically link to the dated version. That way if the information changes it is possible for someone to see where I got the information from at the time of writing. If you want the very latest additions and changes to the spec, then the Editor’s Draft is the place to look. This is the version of the spec that the editors are committing changes to. If I make a change to the Multicol spec and push it to GitHub, within a few minutes that will be live in the Editor’s Draft. So it is possible there are errors, bits of text that we are still working out and so on. The Editor’s Draft however is definitely the place to look if you are wanting to raise an issue on a spec, as it may be that the issue you are about to raise is already fixed. If you are especially keen on seeing updates to specifications keep an eye on https://drafts.csswg.org/ as this is a list of drafts, along with the date they were last updated. How to approach a spec The first thing to understand is that most CSS Specifications start with the most straightforward information, and get progressively further into the weeds. For an author the initial examples and explanations are likely to be of interest, and then the property definitions and examples. Therefore, if you are looking at a vast spec, know that you probably won’t need to read all the way to the bottom, or read every section in detail. The second thing that is useful to know about modern CSS specifications is how modularized they are. It really never is a case of finding everything you need in a single document. If we tried to do that, there would be a lot of repetition and likely inconsistency between specs. There are some key specifications that many other specifications draw on, such as: Values and Units Intrinsic and Extrinsic Sizing Box Alignment When something is defined in another specification the spec you are reading will link to it, so it is worth opening that other spec in a new tab in order that you can refer back to it as you explore. Researching your property As an example we will take a look at the property grid-auto-rows, this property defines row tracks in the implicit grid when using CSS Grid Layout. The first thing you will need to do is find out which specification defines this property. You might already know which spec the property is part of, and therefore you could go directly to the spec and search using your browser or look in the navigation for the spec to find it. Alternatively, you could take a look at the CSS Property Index, which is an automatically generated list of CSS Properties. Clicking on a property will take you to the TR version of the spec, the latest published draft, and the definition of that property in it. This definition begins with a panel detailing the syntax of this property. For grid-auto-rows, you can see that it is listed along with grid-auto-columns as these two properties are essentially identical. They take the same values and work in the same way, one for rows and the other for columns. Value For value we can see that the property accepts a value <track-size>. The next thing to do is to find out what that actually means, clicking will take you to where it is defined in the Grid spec. The <track-size> value is defined as accepting various values: <track-breadth> minmax( <inflexible-breadth> , <track-breadth> ) fit-content( <length-percentage> We need to head down the rabbit hole to find out what each of these mean. From here we essentially go down line by line until we have unpacked the value of track-size. <track-breadth> is defined just below <track-size> as: <length-percentage> <flex> min-content max-content auto So these are all things that would be valid to use as a value for grid-auto-rows. The first value of <length-percentage> is something you will see in many specifications as a value. It means that you can use a length unit - for example px or em - or a percentage. Some properties only accept a <length> in which case you know that you cannot use a percentage as the value. This means that you could have grid-auto-rows with any of the following values. grid-auto-rows: 100px; grid-auto-rows: 1em; grid-auto-rows: 30%; When using percentages, it is important to know what it is a percentage of. As a percentage has to resolve from something. There is text in the spec which explains how column and row percentages work. “<percentage> values are relative to the inline size of the grid container in column grid tracks, and the block size of the grid container in row grid tracks.” This means that in a horizontal writing mode such as when using English, a percentage when used as a track-size in grid-auto-columns would be a percentage of the width of the grid, and a percentage in grid-auto-rows a percentage of the height of the grid. The second value of <flex> is also defined here, as “A non-negative dimension with the unit fr specifying the track’s flex factor.” This is the fr unit, and the spec links to a fuller definition of fr as this unit is only used in Grid Layout so it is therefore defined in the grid spec. We now know that a valid value would be: grid-auto-rows: 1fr; There is some useful information about the fr unit in this part of the spec. It is noted that the fr unit has an automatic minimum. This means that 1fr is really minmax(auto, 1fr). This is why having a number of tracks all at 1fr does not mean that all are equal sized, as a larger item in any of the tracks would have a large auto size and therefore would be larger after spare space had been distributed. We then have min-content and max-content. These keywords can be used for track sizing and the specification defines what they mean in the context of sizing a track, representing the min and max-sizing contributions of the grid tracks. You will see that there are various terms linked in the definition, so if you do not know what these mean you can follow them to find out. For example the spec links max-content contribution to the CSS Intrinsic and Extrinsic Sizing specification. This is one of those specs which is drawn on by many other specifications. If we follow that link we can read the definition there and follow further links to understand what each term means. The more that you read specifications the more these terms will become familiar to you. Just like learning a foreign language, at first you feel like you have to look up every little thing. After a while you remember the vocabulary. We can now add min-content and max-content to our available values. grid-auto-rows: min-content; grid-auto-rows: max-content; The final item in our list is auto. If you are familiar with using Grid Layout, then you are probably aware that an auto sized track for will grow to fit the content used. There is an interesting note here in the spec detailing that auto sized rows will stretch to fill the grid container if there is extra space and align-content or justify-content have a value of stretch. As stretch is the default value, that means these tracks stretch by default. Tracks using other types of length will not behave like this. grid-auto-rows: auto; So, this was the list for <track-breadth>, the next possible value is minmax( <inflexible-breadth> , <track-breadth> ). So this is telling us that we can use minmax() as a value, the final (max) value will be <track-breadth> and we have already unpacked all of the allowable values there. The first value (min) is detailed as an <inflexible-breadth>. If we look at the values for this, we discover that they are the same as <track-breadth>, minus the <flex> value: <length-percentage> min-content max-content auto We already know what all of these do, so we can add possible minmax() values to our list of values for <track-size>. grid-auto-rows: minmax(100px, 200px); grid-auto-rows: minmax(20%, 1fr); grid-auto-rows: minmax(1em, auto); grid-auto-rows: minmax(min-content, max-content); Finally we can use fit-content( <length-percentage>. We can see that fit-content takes a value of <length-percentage> which we already know to be either a length unit, or a percentage. The spec details how fit-content is worked out, and it essentially allows a track which acts as if you had used the max-content keyword, however the track stops growing when it hits the length passed to it. grid-auto-rows: fit-content(200px); grid-auto-rows: fit-content(20%); Those are all of our possible values, and to round things off, check again at the initial <track-size> value, you can see it has a little + sign next to it, click that and you will be taken to the CSS Values and Units module to find that, “A plus (+) indicates that the preceding type, word, or group occurs one or more times.” This means that we can pass a single track size to grid-auto-rows or multiple track sizes as a space separated list. Below the box is an explanation of what happens if you pass in more than one track size: “If multiple track sizes are given, the pattern is repeated as necessary to find the size of the implicit tracks. The first implicit grid track after the explicit grid receives the first specified size, and so on forwards; and the last implicit grid track before the explicit grid receives the last specified size, and so on backwards.” Therefore with the following CSS, if five implicit rows were needed they would be as follows: 100px 1fr auto 100px 1fr .grid { display: grid; grid-auto-rows: 100px 1fr auto; } Initial We can now move to the next line in the box, and you’ll be glad to know that it isn’t going to require as much unpacking! This simply defines the initial value for grid-auto-rows. If you do not specify anything, created rows will be auto sized. All CSS properties have an initial value that they will use if they are invoked as part of the usage of the specification they are in, but you do not set a value for them. In the case of grid-auto-rows it is used whenever rows are created in the implicit grid, so it needs to have a value to be used even if you do not set one. Applies to This line tells us what this property is used for. Some properties are used in multiple places. For example if you look at the definition for justify-content in the Box Alignment specification you can see it is used in multicol containers, flex containers, and grid containers. In our case the property only applies for grid containers. Inherited This tells us if the property can be inherited from a parent element if it is not set. In the case of grid-auto-rows it is not inherited. A property such as color is inherited, so you do not need to set it on each element. Percentages Are percentages allowed for this property, and if so how are they calculated. In this case we are referred to the definition for grid-template-columns and grid-template-rows where we discover that the percentage is from the corresponding dimension of the content area. Media This defines the media group that the property belongs to. In this case visual. Computed Value This details how the value is resolved. The grid-auto-rows property again refers to track sizing as defined for grid-template-columns and grid-template-rows, which tells us the computed value is as specified with lengths made absolute. Canonical Order If you have a property–generally a shorthand property–which takes multiple values in a set order, then those values need to be serialized in the order detailed in the grammar for that property. In general you don’t need to worry about this value in the table. Animation Type This details whether the property can be animated, and if so what type of animation. This is useful if you are trying to animate something and not getting the result that you expect. Note that just because something is listed in the spec as animatable does not mean that browsers will have implemented animation for that property yet! That’s (mostly) it! Sometimes the property will have additional examples - there is one underneath the table for grid-auto-rows. These are worth looking at as they will highlight usage of the property that the spec editor has felt could use an example. There may also be some additional text explaining anythign specific to this property. In selecting grid-auto-rows I chose a fairly complex property in terms of the work we needed to do to unpack the value. Many properties are far simpler than this. However ultimately, even when you come across a complex value, it really is just a case of stepping through the definitions until you come to the bottom of the rabbit hole. Being able to work out what is valid for each property is incredibly useful. It means you don’t waste time trying to use a value that doesn’t work for that property. You also may find that there are values you weren’t aware of, that solve problems for you. Further reading Specifications are not designed to be user manuals, and while they often contain examples, these are pretty terse as they need to be clear to demonstrate their particular point. The manual for the Web Platform is MDN Web Docs. Pairing reading a specification with the examples and information on an MDN property page such as the one for grid-auto-rows is a really great way to ensure that you have all the information and practical usage examples you might need. You may also find useful: Value Definition Syntax on MDN. The MDN Glossary defines many common terms. Understanding the CSS Property Value Syntax goes into more detail in terms of reading the syntax. How to read W3C Specs - from 2001 but still relevant. I hope this article has gone some way to demystify CSS specifications for you. Even if the specifications are not your preferred first stop to learn about new CSS, being able to go directly to the source and avoid having your understanding filtered by someone else, can be very useful indeed. 2018 Rachel Andrew rachelandrew 2018-12-14T00:00:00+00:00 https://24ways.org/2018/researching-a-property-in-the-css-specifications/ code
244 It’s Beginning to Look a Lot Like XSSmas I dread the office Secret Santa. I have a knack for choosing well-meaning but inappropriate presents, like a bottle of port for a teetotaller, a cheese-tasting experience for a vegan, or heaven forbid, Spurs socks for an Arsenal supporter. Ok, the last one was intentional. It’s the same with gifting code. Once, I made a pattern library for A List Apart which I open sourced, and a few weeks later, a glaring security vulnerability was found in it. My gift was so generous that it enabled unrestricted access to any file on any public-facing server that hosted it. With platforms like GitHub and npm, giving the gift of code is so easy it’s practically a no-brainer. This giant, open source yankee swap helps us do our jobs without starting from scratch with every project. But like any gift-giving, it’s also risky. Vulnerabilities and Open Source Open source code is not inherently more or less vulnerable than closed-source code. What makes it higher risk is that the same piece of code gets reused in lots of places, meaning a hacker can use the same exploit mechanism on the same vulnerable code in different apps. Graph showing the number of open source vulnerabilities published per year, from the State of Open Source Security 2017 In the first 24 ways article this year, Katie referenced a few different types of vulnerability: Cross-site Request Forgery (also known as CSRF) SQL Injection Cross-site Scripting (also known as XSS) There are many more types of vulnerability, and those that live under the same category share similarities. For example, my favourite – is it weird to have a favourite vulnerability? – is Cross Site Scripting (XSS), which allows for the injection of scripts into web pages. This is a really common vulnerability often unwittingly added by developers. OWASP (the Open Web Application Security Project) wrote a great article about how to prevent opening the door to XSS attacks – share it generously with your colleagues. Most vulnerabilities like this are not added intentionally – they’re doors left ajar due to the way something has been scripted, like the over-generous code in my pattern library. Others, though, are added intentionally. A few months ago, a hacker, disguised as a helpful elf, offered to take over the maintenance of a popular npm package that had been unmaintained for a couple of years. The owner had moved onto other projects, and was keen to see it continue to be maintained by someone else, so transferred ownership. Fast-forward 3 months, it was discovered that the individual had quietly added a malicious package to the codebase, and the obfuscated code in it had been unwittingly installed onto thousands of apps. The code added was designed to harvest Bitcoin if it was run alongside another application. It was only spotted due to a developer’s curiosity. Another tactic to get developers to unwittingly install malicious packages into their codebase is “typosquatting” – back in August last year, npm reported that a user had been publishing packages with very similar names to popular packages (for example, crossenv instead of cross-env). This is a big wakeup call for open source maintainers. Techniques like this are likely to be used more as the maintenance of open source libraries becomes an increasing burden to their owners. After all, starting a new project often has a greater reward than maintaining an existing one, but remember, an open source library is for life, not just for Christmas. Santa’s on his sleigh If you use open source libraries, chances are that these libraries also use open source libraries. Your app may only have a handful of dependencies, but tucked in the back of that sleigh may be a whole extra sack of dependencies known as deep dependencies (ones that you didn’t directly install, but are dependencies of that dependency), and these can contain vulnerabilities too. Let’s look at the npm package santa as an example. santa has 8 direct dependencies listed on npm. That seems pretty manageable. But that’s just the tip of the iceberg – have a look at the full dependency tree which contains 109 dependencies – more dependencies than there are Christmas puns in this article. Only one of these direct dependencies has a vulnerability (at the time of writing), but there are actually 13 other known vulnerabilities in santa, which have been introduced through its deeper dependencies. Fixing vulnerabilities – the ultimate christmas gift If you’re a maintainer of open source libraries, taking good care of them is the ultimate gift you can give. Keep your dependencies up to date, use a security tool to monitor and alert you when new vulnerabilities are found in your code, and fix or patch them promptly. This will help keep the whole open source ecosystem healthy. When you find out about a new vulnerability, you have some options: Fix the vulnerability via an upgrade You can often fix a vulnerability by upgrading the library to the latest version. Make sure you’re using software that monitors your dependencies for new security issues and lets you know when a fix is ready, otherwise you may be unwittingly using a vulnerable version. Patch the vulnerable code Sometimes, a fix for a vulnerable library isn’t possible. This is often the case when a library is no longer being maintained, or the version of the library being used might be so out of date that upgrading it would cause a breaking change. Patches are bits of code that will fix that particular issue, but won’t change anything else. Switch to a different library If the library you’re using has no fix or patch, you may be better of switching it out for another one, particularly if it looks like it’s being unmaintained. Responsibly disclosing vulnerabilities Knowing how to responsibly disclose vulnerabilities is something I’m ashamed to admit that I didn’t know about before I joined a security company. But it’s so important! On discovering a new vulnerability, a developer has a few options: A malicious developer will exploit that vulnerability for their own gain. A reckless (or inexperienced) developer will disclose that vulnerability to the world without following a responsible disclosure process. This opens the door to an unethical developer exploiting the vulnerability. At Snyk, we monitor social media for mentions of newly found vulnerabilities so we can add them to our database and share fixes before they get exploited. An ethical and aware developer will follow what’s known as a “responsible disclosure process”. They will contact the maintainer of the code privately, allowing reasonable time for them to release a fix for the issue and to give others who use that vulnerable code a chance to fix it too. It’s important to understand this process if you’re a maintainer or contributor of code. It can be daunting when a report comes in, but understanding and following the right steps will help reduce the risk to the people who use that code. So what does responsible disclosure look like? I’ll take Node.js’s security disclosure policy as an example. They ask that all security issues that are found in Node.js are reported there. (There’s a separate process for bug found in third-party npm packages). Once you’ve reported a vulnerability, they promise to acknowledge it within 24 hours, and to give a more detailed response within 48 hours. If they find that the issue is indeed a security bug, they’ll give you regular updates about the progress they’re making towards fixing it. As part of this, they’ll figure out which versions are affected, and prepare fixes for them. They’ll assign the vulnerability a CVE (Common Vulnerabilities and Exposures) ID and decide on an embargo date for public disclosure. On the date of the embargo, they announce the vulnerability in their Node.js security mailing list and deploy fixes to nodejs.org. Tim Kadlec published an in-depth article about responsible disclosures if you’re interested in knowing more. It has some interesting horror stories of what happened when the disclosure process was not followed. Encourage responsible disclosure Add a SECURITY.md file to your project so someone who wants to message you about a vulnerability can do so without having to hunt around for contact details. Last year, Snyk published a State of Open Source Security report that found 79.5% of maintainers do not have a public disclosure policy. Those that did were considerably more likely to get notified privately about a vulnerability – 73% of maintainers who had one had been notified, vs 21% of maintainers who hadn’t published one one. Stats from the State of Open Source Security 2017 Bug bounties Some companies run bug bounties to encourage the responsible disclosure of vulnerabilities. By offering a reward for finding and safely disclosing a vulnerability, it also reduces the enticement of exploiting a vulnerability over reporting it and getting a quick cash reward. Hackerone is a community of ethical hackers who pentest apps that have signed up for the scheme and get paid when they find a new vulnerability. Wordpress is one such participant, and you can see the long list of vulnerabilities that have been disclosed as part of that program. If you don’t have such a bounty, be prepared to get the odd vulnerability extortion email. Scott Helme, who founded securityheaders.com and report-uri.com, wrote a post about some of the requests he gets for a report about a critical vulnerability in exchange for money. On one hand, I want to be as responsible as possible and if my users are at risk then I need to know and patch this issue to protect them. On the other hand this is such irresponsible and unethical behaviour that interacting with this person seems out of the question. A gift worth giving It’s time to brush the dust off those old gifts that we shared and forgot about. Practice good hygiene and run them through your favourite security tool – I’m just a little biased towards Snyk, but as Katie mentioned, there’s also npm audit if you use Node.js, and most source code managers like GitHub and GitLab have basic vulnerability alert capabilities. Stats from the State of Open Source Security 2017 Most importantly, patch or upgrade away those vulnerabilities away, and if you want to share that Christmas spirit, open fixes for your favourite open source projects, too. 2018 Anna Debenham annadebenham 2018-12-17T00:00:00+00:00 https://24ways.org/2018/its-beginning-to-look-a-lot-like-xssmas/ code
246 Designing Your Site Like It’s 1998 It’s 20 years to the day since my wife and I started Stuff & Nonsense, our little studio and my outlet for creative ideas on the web. To celebrate this anniversary—and my fourteenth contribution to 24 ways— I’d like to explain how I would’ve developed a design for Planes, Trains and Automobiles, one of my favourite Christmas films. My design for Planes, Trains and Automobiles is fixed at 800px wide. Developing a <frameset> framework I’ll start by using frames to set up the framework for this new website. Frames are individual pages—one for navigation, the other for my content—pulled together to form a frameset. Space is limited on lower-resolution screens, so by using frames I can ensure my navigation always remains visible. I can include any number of frames inside a <frameset> element. I add two rows to my <frameset>; the first is for my navigation and is 50px tall, the second is for my content and will resize to fill any available space. As I don’t want frame borders or any space between my frames, I set frameborder and framespacing attributes to 0: <frameset frameborder="0" framespacing="0" rows="50,*"> […] </frameset> Next I add the source of my two frame documents. I don’t want people to be able to resize or scroll my navigation, so I add the noresize attribute to that frame: <frameset frameborder="0" framespacing="0" rows="50,*"> <frame noresize scrolling="no" src="nav.html"> <frame src="content.html"> </frameset> I do want links from my navigation to open in the content frame, so I give each <frame> a name so I can specify where I want links to open: <frameset frameborder="0" framespacing="0" rows="50,*"> <frame name="navigation" noresize scrolling="no" src="nav.html"> <frame name="content" src="content.html"> </frameset> The framework for this website is simple as it contains only two horizontal rows. Should I need a more complex layout, I can nest as many framesets—and as many individual documents—as I need: <frameset rows="50,*"> <frame name="navigation"> <frameset cols="25%,*"> <frame name="sidebar"> <frame name="content"> </frameset> </frameset> Letterbox framesets were common way to deal with multiple screen sizes. In a letterbox, the central frameset had a fixed height and width, while the frames on the top, right, bottom, and left expanded to fill any remaining space. Handling older browsers Sadly not every browser supports frames, so I should send a helpful message to people who use older browsers asking them to upgrade. Happily, I can do that using noframes content: <noframes> <body> <p>This page uses frames, but your browser doesn’t support them. Please upgrade your browser.</p> </body> </noframes> Forcing someone back into a frame Sometimes, someone may follow a link to a page from a portal or search engine, or they might attempt to open it in a new window or tab. If that page properly belongs inside a <frameset>, people could easily miss out on other parts of a design. This short script will prevent this happening and because it’s vanilla Javascript, it doesn’t require a library such as jQuery: <script type="text/javascript"> if (top == self) { location = 'frameset.html'; } </script> Laying out my page Before starting my layout, I add a few basic background and colour styles. I must include these attributes in every page on my website: <body background="img/container.jpg" bgcolor="#fef7fb" link="#245eab" alink="#245eab" vlink="#3c146e" text="#000000"> I want absolute control over how people experience my design and don’t want to allow it to stretch, so I first need a <table> which limits the width of my layout to 800px. The align attribute will keep this <table> in the centre of someone’s screen: <table width="800" align="center"> <tr> <td>[…]</td> </tr> </table> Although they were developed for displaying tabular information, the cells and rows which make up the <table> element make it ideal for the precise implementation of a design. I need several tables—often nested inside each other—to implement my design. These include tables for a banner and three rows of content: <table width="800" align="center"> <table>[…]</table> <table> <table> <table>[…]</table> </table> </table> <table>[…]</table> <table>[…]</table> </table> The width of the first table—used for my banner—is fixed to match the logo it contains. As I don’t need borders, padding, or spacing between these cells, I use attributes to remove them: <table border="0" cellpadding="0" cellspacing="0" width="587" align="center"> <tr> <td><img src="logo.gif" border="0" width="587" alt="Logo"></td> </tr> </table> The next table—which contains the largest image, introduction, and a call-to-action—is one of the most complex parts of my design, so I need to ensure its layout is pixel perfect. To do that I add an extra row at the top of this table and fill each of its cells with tiny transparent images: <tr> <td><img src="spacer.gif" width="593" height="1"></td> <td><img src="spacer.gif" width="207" height="1"></td> </tr> The height and width of these “shims” or “spacers” is only 1px but they will stretch to any size without increasing their weight on the page. This makes them perfect for performant website development. For the hero of this design, I splice up the large image into three separate files and apply each slice as a background to the table cells. I also match the height of those cells to the background images: <tr> <td background="slice-1.jpg" height="473"> </td> <td background="slice-2.jpg" height="473">[…]</td> </tr> <tr> <td background="slice-3.jpg" height="388"> </td> </tr> I use tables and spacer images throughout the rest of this design to lay out the various types of content with perfect precision. For example, to add a single-pixel border around my two columns of content, I first apply a blue background to an outer table along with 1px of cellspacing, then simply nest an inner table—this time with a white background—inside it: <table border="0" cellpadding="1" cellspacing="0"> <tr> <td> <table bgcolor="#ffffff" border="0" cellpadding="0" cellspacing="0"> […] </table> </td> </tr> </table> Adding details Tables are fabulous tools for laying out a page, but they’re also useful for implementing details on those pages. I can use a table to add a gradient background, rounded corners, and a shadow to the button which forms my “Buy the DVD” call-to-action. First, I splice my button graphic into three slices; two fixed-width rounded ends, plus a narrow gradient which stretches and makes this button responsive. Then, I add those images as backgrounds and use spacers to perfectly size my button: <table border="0" cellpadding="0" cellspacing="0"> <tr> <td background="btn-1.jpg" border="0" height="48" width="30"><img src="spacer.gif" width="30" height="1"></td> <td background="btn-2.jpg" border="0" height="48"> <center> <a href="" target="_blank"><b>Buy the DVD</b></a> </center> </td> <td background="btn-3.jpg" border="0" height="48" width="30"><img src="spacer.gif" width="30" height="1"></td> </tr> </table> I use those same elements to add details to headlines and lists too. Adding a “bullet” to each item in a list needs only two additional table cells, a circular graphic, and a spacer: <table border="0" cellpadding="0" cellspacing="0"> <tr> <td width="10"><img src="li.gif" border="0" width="8" height="8"> </td> <td><img src="spacer.gif" width="10" height="1"> </td> <td>Directed by John Hughes</td> </tr> </table> Implementing a typographic hierarchy So far I’ve explained how to use frames, tables, and spacers to develop a layout for my content, but what about styling that content? I use <font> elements to change the typeface from the browser’s default to any font installed on someone’s device: <font face="Arial">Planes, Trains and Automobiles is a comedy film […]</font> To adjust the size of those fonts, I use the size attribute and a value between the smallest (1) and the largest (7) where 3 is the browser’s default. I use a size of 4 for this headline and 2 for the text which follows: <font face="Arial" size="4"><b>Steve Martin</b></font> <font face="Arial" size="2">An American actor, comedian, writer, producer, and musician.</font> When I need to change the typeface, perhaps from a sans-serif like Arial to a serif like Times New Roman, I must change the value of the face attribute on every element on all pages on my website. NB: I use as many <br> elements as needed to create space between headlines and paragraphs. View the final result (and especially the source.) My modern day design for Planes, Trains and Automobiles. I can imagine many people reading this and thinking “This is terrible advice because we don’t develop websites like this in 2018.” That’s true. We have the ability to embed any number of web fonts into our products and websites and have far more control over type features, leading, ligatures, and sizes: font-variant-caps: titling-caps; font-variant-ligatures: common-ligatures; font-variant-numeric: oldstyle-nums; Grid has simplified the implementation of even the most complex compound grid down to just a few lines of CSS: body { display: grid; grid-template-columns: 3fr 1fr 2fr 2fr 1fr 3fr; grid-template-rows: auto; grid-column-gap: 2vw; grid-row-gap: 1vh; } Flexbox has made it easy to develop flexible components such as navigation links: nav ul { display: flex; } nav li { flex: 1; } Just one line of CSS can create multiple columns of fluid type: main { column-width: 12em; } CSS Shapes enable text to flow around irregular shapes including polygons: [src*="main-img"] { float: left; shape-outside: polygon(…); } Today, we wouldn’t dream of using images and a table to add a gradient, rounded corners, and a shadow to a button or link, preferring instead: .btn { background: linear-gradient(#8B1212, #DD3A3C); border-radius: 1em; box-shadow: 0 2px 4px 0 rgba(0,0,0,0.50), inset 0 -1px 1px 0 rgba(0,0,0,0.50); } CSS Custom Properties, feature and media queries, filters, pseudo-elements, and SVG; the list of advances in HTML, CSS, and other technologies goes on. So does our understanding of how best to use them by separating content, structure, presentation, and behaviour. As 2018 draws to a close, we’re certain we know how to design and develop products and websites better than we did at the end of 1998. Strange as it might seem looking back, in 1998 we were also certain our techniques and technologies were the best for the job. That’s why it’s dangerous to believe with absolute certainty that the frameworks and tools we increasingly rely on today—tools like Bootstrap, Bower, and Brunch, Grunt, Gulp, Node, Require, React, and Sass—will be any more relevant in the future than <font> elements, frames, layout tables, and spacer images are today. I have no prediction for what the web will be like twenty years from now. However, I want to believe we’ll build on what we’ve learned during these past two decades about the importance of accessibility, flexibility, and usability, and that the mistakes we made while infatuated by technologies won’t be repeated. Head over to my website if you’d like to read about how I’d implement my design for ‘Planes, Trains and Automobiles’ today. 2018 Andy Clarke andyclarke 2018-12-23T00:00:00+00:00 https://24ways.org/2018/designing-your-site-like-its-1998/ code
247 Managing Flow and Rhythm with CSS Custom Properties An important part of designing user interfaces is creating consistent vertical rhythm between elements. Creating consistent, predictable space doesn’t just make your web pages and views look better, but it can also improve the scan-ability. Browsers ship with default CSS and these styles often create consistent rhythm for flow elements out of the box. The problem is though that we often reset these styles with a reset. Elements such as <div> and <section> also have no default margin or padding associated with them. I’ve tried all sorts of weird and wonderful techniques to find a balance between using inherited CSS while also levelling the playing field for component driven front-ends with very little success. This experimentation is how I landed on the flow utility, though and I’m going to show you how it works. Let’s dive in! The Flow utility With the ever-growing number of folks working with component libraries and design systems, we could benefit from a utility that creates space for us, only when it’s appropriate to do so. The problem with my previous attempts at fixing this is that the spacing values were very rigid. That’s fine for 90% of contexts, but sometimes, it’s handy to be able to tweak the values based on the exact context of your component. This is where CSS Custom Properties come in handy. The code .flow { --flow-space: 1em; } .flow > * + * { margin-top: var(--flow-space); } What this code does is enable you to add a class of flow to an element which will then add margin-top to sibling elements within that element. We use the lobotomised owl selector to select these siblings. This approach enables an almost anonymous and automatic system which is ideal for component library based front-ends where components probably don’t have any idea what surrounds them. The other important part of this utility is the usage of the --flow-space custom property. We define it in the .flow component and each element within it will be spaced by --flow-space, by default. The beauty about setting this as a custom property is that custom properties also participate in the cascade, so we can utilise specificity to change it if we need it. Pretty cool, right? Let’s look at some examples. A basic example See the Pen CSS Flow Utility: Basic implementation by Andy Bell (@hankchizljaw) on CodePen. https://codepen.io/hankchizljaw/pen/LXqerj What we’ve got in this example is some basic HTML content that has a class of flow on the parent article element. Because there’s a very heavy-handed reset added as a dependency, all of the content would have been squished together without the flow utility. Because our --flow-space custom property is set to 1em, the space between elements is 1X the font size of the element in question. This means that a <h2> in this context has a calculated margin-top value of 28.8px, because it has an assigned font size of 1.8rem. If we were to globally change the --flow-space value to 1.1em for example, we’d affect everything because margin values would be calculated as 1.1X the font size. This example looks great because using font size as the basis of rhythm works really well. What if we wanted to to tweak certain elements within this article, though? See the Pen CSS Flow Utility: Tweaked Basic implementation by Andy Bell (@hankchizljaw) on CodePen. https://codepen.io/hankchizljaw/pen/qQgxaY I like lots of whitespace with my article layouts, so the 1em space isn’t going to cut it for all elements. I like to provide plenty of space between headed sections, so I increase the --flow-space in these instances: h2 { --flow-space: 3rem; } Notice also how I also switch over to using rem units? I want to make sure that these overrides are always based on the root font size. This is a personal preference of mine and you can use whatever units you want. Just be aware that it’s better for accessibility to use flexible units like em, rem and %, so that a user’s font size preferences are honoured. A more advanced example Although the flow utility is super useful for a plethora of contexts, it really shines when working with a few unrelated components. Instead of having to write specific layout CSS just for your particular context, you can use flow and --flow-space to create predictable and contextual space. See the Pen CSS Flow Utility: Unrelated components by Andy Bell (@hankchizljaw) on CodePen. https://codepen.io/hankchizljaw/pen/ZmPGyL In this example, we’ve got ourselves a little prototype layout that features a media element, followed by a grid of features. By using flow, it was really quick and easy to generate space between those two main elements. It was also easy to create space within the components. For example, I added it to the .media__content element, so that the article’s content would space itself: <article class="media__content flow"> ... </article> Something to remember though: the custom properties cascade in the same way that other CSS values do, so you’ve got to keep that in mind. We’ve got a great example of that in this example where because we’ve got the flow utility on our .features component, which has a --flow-space override: the child elements of .features will inherit that value, so we’ve had to set another value on the .features__list element. “But what about old browsers?”, I hear you cry We’re using CSS Custom Properties that at the time of writing, have about 88% support. One thing we can do to remedy the other 12% of browsers is to set a default, traditional margin-top value of 1em, so it calculates itself based on the element’s font-size: .flow { --flow-space: 1em; } .flow > * + * { margin-top: 1em; margin-top: var(--flow-space); } Thanks to the cascading and declarative nature of CSS, we can set that default margin-top value and then immediately set it to use the custom property instead. Browsers that understand Custom Properties will automatically apply them—those that don’t will ignore them. Yay for the cascade and progressive enhancement! Wrapping up This tiny little utility can bring great power for when you want to consistently space elements, vertically. It also—thanks to the power of the modern web—allows us to create contextual overrides without creating modifier classes or shame CSS. If you’ve got other methods of doing this sort of work, please let me know on Twitter. I’d love to see what you’re working on! 2018 Andy Bell andybell 2018-12-07T00:00:00+00:00 https://24ways.org/2018/managing-flow-and-rhythm-with-css-custom-properties/ code
249 Fast Autocomplete Search for Your Website Every website deserves a great search engine - but building a search engine can be a lot of work, and hosting it can quickly get expensive. I’m going to build a search engine for 24 ways that’s fast enough to support autocomplete (a.k.a. typeahead) search queries and can be hosted for free. I’ll be using wget, Python, SQLite, Jupyter, sqlite-utils and my open source Datasette tool to build the API backend, and a few dozen lines of modern vanilla JavaScript to build the interface. Try it out here, then read on to see how I built it. First step: crawling the data The first step in building a search engine is to grab a copy of the data that you plan to make searchable. There are plenty of potential ways to do this: you might be able to pull it directly from a database, or extract it using an API. If you don’t have access to the raw data, you can imitate Google and write a crawler to extract the data that you need. I’m going to do exactly that against 24 ways: I’ll build a simple crawler using wget, a command-line tool that features a powerful “recursive” mode that’s ideal for scraping websites. We’ll start at the https://24ways.org/archives/ page, which links to an archived index for every year that 24 ways has been running. Then we’ll tell wget to recursively crawl the website, using the --recursive flag. We don’t want to fetch every single page on the site - we’re only interested in the actual articles. Luckily, 24 ways has nicely designed URLs, so we can tell wget that we only care about pages that start with one of the years it has been running, using the -I argument like this: -I /2005,/2006,/2007,/2008,/2009,/2010,/2011,/2012,/2013,/2014,/2015,/2016,/2017 We want to be polite, so let’s wait for 2 seconds between each request rather than hammering the site as fast as we can: --wait 2 The first time I ran this, I accidentally downloaded the comments pages as well. We don’t want those, so let’s exclude them from the crawl using -X "/*/*/comments". Finally, it’s useful to be able to run the command multiple times without downloading pages that we have already fetched. We can use the --no-clobber option for this. Tie all of those options together and we get this command: wget --recursive --wait 2 --no-clobber -I /2005,/2006,/2007,/2008,/2009,/2010,/2011,/2012,/2013,/2014,/2015,/2016,/2017 -X "/*/*/comments" https://24ways.org/archives/ If you leave this running for a few minutes, you’ll end up with a folder structure something like this: $ find 24ways.org 24ways.org 24ways.org/2013 24ways.org/2013/why-bother-with-accessibility 24ways.org/2013/why-bother-with-accessibility/index.html 24ways.org/2013/levelling-up 24ways.org/2013/levelling-up/index.html 24ways.org/2013/project-hubs 24ways.org/2013/project-hubs/index.html 24ways.org/2013/credits-and-recognition 24ways.org/2013/credits-and-recognition/index.html ... As a quick sanity check, let’s count the number of HTML pages we have retrieved: $ find 24ways.org | grep index.html | wc -l 328 There’s one last step! We got everything up to 2017, but we need to fetch the articles for 2018 (so far) as well. They aren’t linked in the /archives/ yet so we need to point our crawler at the site’s front page instead: wget --recursive --wait 2 --no-clobber -I /2018 -X "/*/*/comments" https://24ways.org/ Thanks to --no-clobber, this is safe to run every day in December to pick up any new content. We now have a folder on our computer containing an HTML file for every article that has ever been published on the site! Let’s use them to build ourselves a search index. Building a search index using SQLite There are many tools out there that can be used to build a search engine. You can use an open-source search server like Elasticsearch or Solr, a hosted option like Algolia or Amazon CloudSearch or you can tap into the built-in search features of relational databases like MySQL or PostgreSQL. I’m going to use something that’s less commonly used for web applications but makes for a powerful and extremely inexpensive alternative: SQLite. SQLite is the world’s most widely deployed database, even though many people have never even heard of it. That’s because it’s designed to be used as an embedded database: it’s commonly used by native mobile applications and even runs as part of the default set of apps on the Apple Watch! SQLite has one major limitation: unlike databases like MySQL and PostgreSQL, it isn’t really designed to handle large numbers of concurrent writes. For this reason, most people avoid it for building web applications. This doesn’t matter nearly so much if you are building a search engine for infrequently updated content - say one for a site that only publishes new content on 24 days every year. It turns out SQLite has very powerful full-text search functionality built into the core database - the FTS5 extension. I’ve been doing a lot of work with SQLite recently, and as part of that, I’ve been building a Python utility library to make building new SQLite databases as easy as possible, called sqlite-utils. It’s designed to be used within a Jupyter notebook - an enormously productive way of interacting with Python code that’s similar to the Observable notebooks Natalie described on 24 ways yesterday. If you haven’t used Jupyter before, here’s the fastest way to get up and running with it - assuming you have Python 3 installed on your machine. We can use a Python virtual environment to ensure the software we are installing doesn’t clash with any other installed packages: $ python3 -m venv ./jupyter-venv $ ./jupyter-venv/bin/pip install jupyter # ... lots of installer output # Now lets install some extra packages we will need later $ ./jupyter-venv/bin/pip install beautifulsoup4 sqlite-utils html5lib # And start the notebook web application $ ./jupyter-venv/bin/jupyter-notebook # This will open your browser to Jupyter at http://localhost:8888/ You should now be in the Jupyter web application. Click New -> Python 3 to start a new notebook. A neat thing about Jupyter notebooks is that if you publish them to GitHub (either in a regular repository or as a Gist), it will render them as HTML. This makes them a very powerful way to share annotated code. I’ve published the notebook I used to build the search index on my GitHub account. ​ Here’s the Python code I used to scrape the relevant data from the downloaded HTML files. Check out the notebook for a line-by-line explanation of what’s going on. from pathlib import Path from bs4 import BeautifulSoup as Soup base = Path("/Users/simonw/Dropbox/Development/24ways-search") articles = list(base.glob("*/*/*/*.html")) # articles is now a list of paths that look like this: # PosixPath('...24ways-search/24ways.org/2013/why-bother-with-accessibility/index.html') docs = [] for path in articles: year = str(path.relative_to(base)).split("/")[1] url = 'https://' + str(path.relative_to(base).parent) + '/' soup = Soup(path.open().read(), "html5lib") author = soup.select_one(".c-continue")["title"].split( "More information about" )[1].strip() author_slug = soup.select_one(".c-continue")["href"].split( "/authors/" )[1].split("/")[0] published = soup.select_one(".c-meta time")["datetime"] contents = soup.select_one(".e-content").text.strip() title = soup.find("title").text.split(" ◆")[0] try: topic = soup.select_one( '.c-meta a[href^="/topics/"]' )["href"].split("/topics/")[1].split("/")[0] except TypeError: topic = None docs.append({ "title": title, "contents": contents, "year": year, "author": author, "author_slug": author_slug, "published": published, "url": url, "topic": topic, }) After running this code, I have a list of Python dictionaries representing each of the documents that I want to add to the index. The list looks something like this: [ { "title": "Why Bother with Accessibility?", "contents": "Web accessibility (known in other fields as inclus...", "year": "2013", "author": "Laura Kalbag", "author_slug": "laurakalbag", "published": "2013-12-10T00:00:00+00:00", "url": "https://24ways.org/2013/why-bother-with-accessibility/", "topic": "design" }, { "title": "Levelling Up", "contents": "Hello, 24 ways. Iu2019m Ashley and I sell property ins...", "year": "2013", "author": "Ashley Baxter", "author_slug": "ashleybaxter", "published": "2013-12-06T00:00:00+00:00", "url": "https://24ways.org/2013/levelling-up/", "topic": "business" }, ... My sqlite-utils library has the ability to take a list of objects like this and automatically create a SQLite database table with the right schema to store the data. Here’s how to do that using this list of dictionaries. import sqlite_utils db = sqlite_utils.Database("/tmp/24ways.db") db["articles"].insert_all(docs) That’s all there is to it! The library will create a new database and add a table to it called articles with the necessary columns, then insert all of the documents into that table. (I put the database in /tmp/ for the moment - you can move it to a more sensible location later on.) You can inspect the table using the sqlite3 command-line utility (which comes with OS X) like this: $ sqlite3 /tmp/24ways.db sqlite> .headers on sqlite> .mode column sqlite> select title, author, year from articles; title author year ------------------------------ ------------ ---------- Why Bother with Accessibility? Laura Kalbag 2013 Levelling Up Ashley Baxte 2013 Project Hubs: A Home Base for Brad Frost 2013 Credits and Recognition Geri Coady 2013 Managing a Mind Christopher 2013 Run Ragged Mark Boulton 2013 Get Started With GitHub Pages Anna Debenha 2013 Coding Towards Accessibility Charlie Perr 2013 ... <Ctrl+D to quit> There’s one last step to take in our notebook. We know we want to use SQLite’s full-text search feature, and sqlite-utils has a simple convenience method for enabling it for a specified set of columns in a table. We want to be able to search by the title, author and contents fields, so we call the enable_fts() method like this: db["articles"].enable_fts(["title", "author", "contents"]) Introducing Datasette Datasette is the open-source tool I’ve been building that makes it easy to both explore SQLite databases and publish them to the internet. We’ve been exploring our new SQLite database using the sqlite3 command-line tool. Wouldn’t it be nice if we could use a more human-friendly interface for that? If you don’t want to install Datasette right now, you can visit https://search-24ways.herokuapp.com/ to try it out against the 24 ways search index data. I’ll show you how to deploy Datasette to Heroku like this later in the article. If you want to install Datasette locally, you can reuse the virtual environment we created to play with Jupyter: ./jupyter-venv/bin/pip install datasette This will install Datasette in the ./jupyter-venv/bin/ folder. You can also install it system-wide using regular pip install datasette. Now you can run Datasette against the 24ways.db file we created earlier like so: ./jupyter-venv/bin/datasette /tmp/24ways.db This will start a local webserver running. Visit http://localhost:8001/ to start interacting with the Datasette web application. If you want to try out Datasette without creating your own 24ways.db file you can download the one I created directly from https://search-24ways.herokuapp.com/24ways-ae60295.db Publishing the database to the internet One of the goals of the Datasette project is to make deploying data-backed APIs to the internet as easy as possible. Datasette has a built-in command for this, datasette publish. If you have an account with Heroku or Zeit Now, you can deploy a database to the internet with a single command. Here’s how I deployed https://search-24ways.herokuapp.com/ (running on Heroku’s free tier) using datasette publish: $ ./jupyter-venv/bin/datasette publish heroku /tmp/24ways.db --name search-24ways -----> Python app detected -----> Installing requirements with pip -----> Running post-compile hook -----> Discovering process types Procfile declares types -> web -----> Compressing... Done: 47.1M -----> Launching... Released v8 https://search-24ways.herokuapp.com/ deployed to Heroku If you try this out, you’ll need to pick a different --name, since I’ve already taken search-24ways. You can run this command as many times as you like to deploy updated versions of the underlying database. Searching and faceting Datasette can detect tables with SQLite full-text search configured, and will add a search box directly to the page. Take a look at http://search-24ways.herokuapp.com/24ways-b607e21/articles to see this in action. ​ SQLite search supports wildcards, so if you want autocomplete-style search where you don’t need to enter full words to start getting results you can add a * to the end of your search term. Here’s a search for access* which returns articles on accessibility: http://search-24ways.herokuapp.com/24ways-ae60295/articles?_search=acces%2A A neat feature of Datasette is the ability to calculate facets against your data. Here’s a page showing search results for svg with facet counts calculated against both the year and the topic columns: http://search-24ways.herokuapp.com/24ways-ae60295/articles?_search=svg&_facet=year&_facet=topic Every page visible via Datasette has a corresponding JSON API, which can be accessed using the JSON link on the page - or by adding a .json extension to the URL: http://search-24ways.herokuapp.com/24ways-ae60295/articles.json?_search=acces%2A Better search using custom SQL The search results we get back from ../articles?_search=svg are OK, but the order they are returned in is not ideal - they’re actually being returned in the order they were inserted into the database! You can see why this is happening by clicking the View and edit SQL link on that search results page. This exposes the underlying SQL query, which looks like this: select rowid, * from articles where rowid in ( select rowid from articles_fts where articles_fts match :search ) order by rowid limit 101 We can do better than this by constructing a custom SQL query. Here’s the query we will use instead: select snippet(articles_fts, -1, 'b4de2a49c8', '8c94a2ed4b', '...', 100) as snippet, articles_fts.rank, articles.title, articles.url, articles.author, articles.year from articles join articles_fts on articles.rowid = articles_fts.rowid where articles_fts match :search || "*" order by rank limit 10; You can try this query out directly - since Datasette opens the underling SQLite database in read-only mode and enforces a one second time limit on queries, it’s safe to allow users to provide arbitrary SQL select queries for Datasette to execute. There’s a lot going on here! Let’s break the SQL down line-by-line: select snippet(articles_fts, -1, 'b4de2a49c8', '8c94a2ed4b', '...', 100) as snippet, We’re using snippet(), a built-in SQLite function, to generate a snippet highlighting the words that matched the query. We use two unique strings that I made up to mark the beginning and end of each match - you’ll see why in the JavaScript later on. articles_fts.rank, articles.title, articles.url, articles.author, articles.year These are the other fields we need back - most of them are from the articles table but we retrieve the rank (representing the strength of the search match) from the magical articles_fts table. from articles join articles_fts on articles.rowid = articles_fts.rowid articles is the table containing our data. articles_fts is a magic SQLite virtual table which implements full-text search - we need to join against it to be able to query it. where articles_fts match :search || "*" order by rank limit 10; :search || "*" takes the ?search= argument from the page querystring and adds a * to the end of it, giving us the wildcard search that we want for autocomplete. We then match that against the articles_fts table using the match operator. Finally, we order by rank so that the best matching results are returned at the top - and limit to the first 10 results. How do we turn this into an API? As before, the secret is to add the .json extension. Datasette actually supports multiple shapes of JSON - we’re going to use ?_shape=array to get back a plain array of objects: JSON API call to search for articles matching SVG The HTML version of that page shows the time taken to execute the SQL in the footer. Hitting refresh a few times, I get response times between 2 and 5ms - easily fast enough to power a responsive autocomplete feature. A simple JavaScript autocomplete search interface I considered building this using React or Svelte or another of the myriad of JavaScript framework options available today, but then I remembered that vanilla JavaScript in 2018 is a very productive environment all on its own. We need a few small utility functions: first, a classic debounce function adapted from this one by David Walsh: function debounce(func, wait, immediate) { let timeout; return function() { let context = this, args = arguments; let later = () => { timeout = null; if (!immediate) func.apply(context, args); }; let callNow = immediate && !timeout; clearTimeout(timeout); timeout = setTimeout(later, wait); if (callNow) func.apply(context, args); }; }; We’ll use this to only send fetch() requests a maximum of once every 100ms while the user is typing. Since we’re rendering data that might include HTML tags (24 ways is a site about web development after all), we need an HTML escaping function. I’m amazed that browsers still don’t bundle a default one of these: const htmlEscape = (s) => s.replace( />/g, '&gt;' ).replace( /</g, '&lt;' ).replace( /&/g, '&' ).replace( /"/g, '&quot;' ).replace( /'/g, '&#039;' ); We need some HTML for the search form, and a div in which to render the results: <h1>Autocomplete search</h1> <form> <p><input id="searchbox" type="search" placeholder="Search 24ways" style="width: 60%"></p> </form> <div id="results"></div> And now the autocomplete implementation itself, as a glorious, messy stream-of-consciousness of JavaScript: // Embed the SQL query in a multi-line backtick string: const sql = `select snippet(articles_fts, -1, 'b4de2a49c8', '8c94a2ed4b', '...', 100) as snippet, articles_fts.rank, articles.title, articles.url, articles.author, articles.year from articles join articles_fts on articles.rowid = articles_fts.rowid where articles_fts match :search || "*" order by rank limit 10`; // Grab a reference to the <input type="search"> const searchbox = document.getElementById("searchbox"); // Used to avoid race-conditions: let requestInFlight = null; searchbox.onkeyup = debounce(() => { const q = searchbox.value; // Construct the API URL, using encodeURIComponent() for the parameters const url = ( "https://search-24ways.herokuapp.com/24ways-866073b.json?sql=" + encodeURIComponent(sql) + `&search=${encodeURIComponent(q)}&_shape=array` ); // Unique object used just for race-condition comparison let currentRequest = {}; requestInFlight = currentRequest; fetch(url).then(r => r.json()).then(d => { if (requestInFlight !== currentRequest) { // Avoid race conditions where a slow request returns // after a faster one. return; } let results = d.map(r => ` <div class="result"> <h3><a href="${r.url}">${htmlEscape(r.title)}</a></h3> <p><small>${htmlEscape(r.author)} - ${r.year}</small></p> <p>${highlight(r.snippet)}</p> </div> `).join(""); document.getElementById("results").innerHTML = results; }); }, 100); // debounce every 100ms There’s just one more utility function, used to help construct the HTML results: const highlight = (s) => htmlEscape(s).replace( /b4de2a49c8/g, '<b>' ).replace( /8c94a2ed4b/g, '</b>' ); This is what those unique strings passed to the snippet() function were for. Avoiding race conditions in autocomplete One trick in this code that you may not have seen before is the way race-conditions are handled. Any time you build an autocomplete feature, you have to consider the following case: User types acces Browser sends request A - querying documents matching acces* User continues to type accessibility Browser sends request B - querying documents matching accessibility* Request B returns. It was fast, because there are fewer documents matching the full term The results interface updates with the documents from request B, matching accessibility* Request A returns results (this was the slower of the two requests) The results interface updates with the documents from request A - results matching access* This is a terrible user experience: the user saw their desired results for a brief second, and then had them snatched away and replaced with those results from earlier on. Thankfully there’s an easy way to avoid this. I set up a variable in the outer scope called requestInFlight, initially set to null. Any time I start a new fetch() request, I create a new currentRequest = {} object and assign it to the outer requestInFlight as well. When the fetch() completes, I use requestInFlight !== currentRequest to sanity check that the currentRequest object is strictly identical to the one that was in flight. If a new request has been triggered since we started the current request we can detect that and avoid updating the results. It’s not a lot of code, really And that’s the whole thing! The code is pretty ugly, but when the entire implementation clocks in at fewer than 70 lines of JavaScript, I honestly don’t think it matters. You’re welcome to refactor it as much you like. How good is this search implementation? I’ve been building search engines for a long time using a wide variety of technologies and I’m happy to report that using SQLite in this way is genuinely a really solid option. It scales happily up to hundreds of MBs (or even GBs) of data, and the fact that it’s based on SQL makes it easy and flexible to work with. A surprisingly large number of desktop and mobile applications you use every day implement their search feature on top of SQLite. More importantly though, I hope that this demonstrates that using Datasette for an API means you can build relatively sophisticated API-backed applications with very little backend programming effort. If you’re working with a small-to-medium amount of data that changes infrequently, you may not need a more expensive database. Datasette-powered applications easily fit within the free tier of both Heroku and Zeit Now. For more of my writing on Datasette, check out the datasette tag on my blog. And if you do build something fun with it, please let me know on Twitter. 2018 Simon Willison simonwillison 2018-12-19T00:00:00+00:00 https://24ways.org/2018/fast-autocomplete-search-for-your-website/ code
253 Clip Paths Know No Bounds CSS Shapes are getting a lot of attention as browser support has increased for properties like shape-outside and clip-path. There are a few ways that we can use CSS Shapes, in particular with the clip-path property, that are not necessarily evident at first glance. The basics of a clip path Before we dig into specific techniques to expand on clip paths, we should first take a look at a basic shape and clip-path. Clip paths can apply a CSS Shape such as a circle(), ellipse(), inset(), or the flexible polygon() to any element. Everywhere in the element that is not within the bounds of our shape will be visually removed. Using the polygon shape function, for example, we can create triangles, stars, or other straight-edged shapes as on Bennett Feely’s Clippy. While fixed units like pixels can be used when defining vertices/points (where the sides meet), percentages will give more flexibility to adapt to the element’s dimensions. See the Pen Clip Path Box by Dan Wilson (@danwilson) on CodePen. So for an octagon, we can set eight x, y pairs of percentages to define those points. In this case we start 30% into the width of the box for the first x and at the top of the box for the y and go clockwise. The visible area becomes the interior of the shape made by connecting these points with straight lines. clip-path: polygon( 30% 0%, 70% 0%, 100% 30%, 100% 70%, 70% 100%, 30% 100%, 0% 70%, 0% 30% ); A shape with less vertices than the eye can see It’s reasonable to look at the polygon() function and assume that we need to have one pair of x, y coordinates for every point in our shape. However, we gain some flexibility by thinking outside the box — or more specifically when we think outside the range of 0% - 100%. Our element’s box model will be the ultimate boundary for a clip-path, but we can still define points that exist beyond that natural box for an element. See the Pen CSS Shapes Know No Bounds by Dan Wilson (@danwilson) on CodePen. By going beyond the 0% - 100% range we can turn a polygon with three points into a quadrilateral, a pentagon, or a hexagon. In this example the shapes used are all similar triangles defining three points, but due to exceeding the bounds for our element box we visually see one triangle and two pentagons. Our earlier octagon can similarly be made with only four points. See the Pen Octagon with four points by Dan Wilson (@danwilson) on CodePen. Multiple shapes, one clip path We can lean on this power of going beyond the bounds of our element to also create more than one visual shape with a single polygon(). See the Pen Multiple shapes from one clip-path by Dan Wilson (@danwilson) on CodePen. Depending on how we lay it out we can make each shape directly, but since we know we can move around in the space beyond the element’s box, we can draw extra lines to help us get where we need to go next as needed. It can also help us in slicing an element. Combined with CSS Variables, we can work with overlapping elements and clip each one into alternating strips. This example is two elements, each divided into a few rectangles. See the Pen 24w: Sliced Icon by Dan Wilson (@danwilson) on CodePen. Different shapes with fill rules A polygon() is not just a collection of points. There is one more key piece to its puzzle according to the specification — the Fill Rule. The default value we have been using so far is nonzero, and the second option is evenodd. These two values help determine what is considered inside and outside the shape. See the Pen A Star Multiways by Dan Wilson (@danwilson) on CodePen. As lines intersect we can get into situations where pieces seemingly on the inside can be considered outside the shape boundary. When using the evenodd fill rule, we can determine if a given point is inside or outside the boundary by drawing a ray from the point in any direction. If the ray crosses an even number of the clip path’s lines, the point is considered outside, and if it crosses an odd number the point is inside. Order of operations It is important to note that there are many CSS properties that affect the final composited appearance of an element via CSS Filters, Blend Modes, and more. These compositing effects are applied in the order: CSS Filters (e.g. filter: blur(2px)) Clipping (e.g. what this article is about) Masking (Clipping’s cousin) Blend Modes (e.g. mix-blend-mode: multiply) Opacity This means if we want to have a star shape and blur it, the blur will happen before the clip. And since blurs are most noticeable around the edge of an element box, the effect might be completely lost since we have clipped away the element’s box edges. See the Pen Order of Filter + Clip by Dan Wilson (@danwilson) on CodePen. If we want the edges of the star to be blurred, we do have the option to wrap our clipped element in a blurred parent element. The inner element will be rendered first (with its star clip) and then the parent will blur its contents normally. Revealing content with animation CSS Shapes can be transitioned and animated, allowing us to animate the visual area of our element without affecting the content within. For example, we can start with visually hidden content (fully clipped) and grow the clip path to reveal the content within. The important caveat for polygon() is that the number of points need to be the same for each keyframe, as well as the fill rule. Otherwise the browser will not have enough information to interpolate the intermediate values. See the Pen Clip Path Shape Reveal by Dan Wilson (@danwilson) on CodePen. Don’t keep CSS Shapes in a box Clip paths give us some interesting new possibilities, especially when we think of them as more than just basic shapes. We may be heavily modifying the visual representation of our elements with clip-path, but the underlying content remains unchanged and accessible which makes this property fairly powerful. 2018 Dan Wilson danwilson 2018-12-20T00:00:00+00:00 https://24ways.org/2018/clip-paths-know-no-bounds/ code
255 Inclusive Considerations When Restyling Form Controls I would like to begin by saying 2018 was the year that we, as developers, visual designers, browser implementers, and inclusive design and experience specialists rallied together and achieved a long-sought goal: We now have the ability to fully style form controls, across all modern browsers, while retaining their ease of declaration, native functionality and accessibility. I would like to begin by saying all these things. However, they’re not true. I think we spent the year debating about what file extension CSS should be written in, or something. Or was that last year? Maybe I’m thinking of next year. Returning to reality, styling form controls is more tricky and time consuming these days rather than flat out “hard”. In fact, depending on the length of the styling-leash a particular browser provides, there are controls you can style quite a bit. As for browsers with shorter leashes, there are other options to force their controls closer to the visual design you’re tasked to match. However, when striving for custom styled controls, one must be careful not to forget about the inherent functionality and accessibility that many provide. People expect and deserve the products and services they use and pay for to work for them. If these services are visually pleasing, but only function for those who fit the handful of personas they’ve been designed for, then we’ve potentially deprived many people the experiences they deserve. Quick level setting Getting down to brass tacks, when creating custom styled form controls that should retain their expected semantics and functionality, we have to consider the following: Many form elements can be styled directly through standard and browser specific selectors, as well as through some clever styling of markup patterns. We should leverage these native options before reinventing any wheels. It is important to preserve the underlying semantics of interactive controls. We must not unintentionally exclude people who use assistive technologies (ATs) that rely on these semantics. Make sure you test what you create. There is a lot of underlying complexity to form controls which may not be immediately apparent if they’re judged solely by their visual presentation in a single browser, or with limited AT testing. Visually resetting and restyling form controls Over the course of 2018, I worked on a project where I tested and reported on the accessibility impact of styling various form controls. In conducting my research, I reviewed many of the form controls available in HTML, testing to see how malleable they were to direct styling from standardized CSS selectors. As I expected, controls such as the various text fields could be restyled rather easily. However, other controls like radio buttons and checkboxes, or sub-elements of special text fields like date, search, and number spinners were resistant to standard-based styling. These particular controls and their sub-elements required specific pseudo-elements to reset and allow for restyling of some of their default presentation. See the Pen form control styling comparisons by Scott (@scottohara) on CodePen. https://codepen.io/scottohara/pen/gZOrZm/ Over the years, the ability to directly style form controls has been something many people have clamored for. However, one should realize the benefits of being able to restyle some of these controls may involve more effort than originally anticipated. If you want to restyle a control from the ground up, then you must also recreate any :active, :focus, and :hover states for the control—all those things that were previously taken care of by browsers. Not only that, but anything you restyle should also work with Windows High Contrast mode, styling for dark mode, and other OS-level settings that browser respect without you even realizing. You ever try playing with the accessibility settings of your display on macOS, or similar Windows setting? It is also worth mentioning that any browser prefixed pseudo-elements are not standardized CSS selectors. As MDN mentions at the top of their pages documenting these pseudo-elements: Non-standard This feature is non-standard and is not on a standards track. Do not use it on production sites facing the Web: it will not work for every user. There may also be large incompatibilities between implementations and the behavior may change in the future. While this may be a deterrent for some, it’s my opinion the risks are often only skin-deep. By which I mean if a non-standard selector does change, the control may look a bit quirky, but likely won’t cease to function. A bug report which requires a CSS selector change can be an easy JIRA ticket to close, after all. Can’t make it? Fake it. Internet Explorer 11 (IE11) is still neck-and-neck with other browsers in vying for the number 2 spot in desktop browser share. Due to IE not recognizing vendor-prefixed appearance properties, some essential controls like checkboxes won’t render as intended. Additionally, some controls like select boxes, file uploads, and sub-elements of date fields (calendar popups) cannot be modified by just relying on styling their HTML selectors alone. This means that unless your company designs and develops with a progressive enhancement, or graceful degradation mindset, you’ll need to take a different approach in styling. Getting clever with markup and CSS The following CodePen demonstrates how we can create a custom checkbox markup pattern. By mindfully utilizing CSS sibling selectors and positioning of the native control, we can create custom visual styling while also retaining the functionality and accessibility expectations of a native checkbox. See the Pen Accessible Styled Native Checkbox by Scott (@scottohara) on CodePen. https://codepen.io/scottohara/pen/RqEayN/ Customizing checkboxes by visually hiding the input and styling well-placed markup with sibling selectors may seem old hat to some. However, many variations of these patterns do not take into account how their method of visually hiding the checkboxes can create discovery issues for certain screen reader navigation methods. For instance, if someone is using a mobile device and exploring by touch, how will they be able to drag their finger over an input that has been reduced to a single pixel, or positioned off screen? As we move away from the simplicity of declaring a single HTML element and using clever CSS and markup patterns to create restyled form controls, we increase the need for additional testing to ensure no expected behaviors are lost. In other words, what should work in theory may not work in practice when you introduce the various different ways people may engage with a form control. It’s worth remembering: what might be typical interactions for ourselves may be problematic if not impossible for others. Limitations to cleverness Creative coding will allow us to apply more consistent custom styles to some of the more problematic form controls. There will be a varied amount of custom markup, CSS, and sometimes JavaScript that will be needed to preserve the control’s inherent usability and accessibility for each control we take this approach to. However, this method of restyling still doesn’t solve for the lack of feature parity across different browsers. Nor is it a means to account for controls which don’t have a native HTML element equivalent, such as a switch or multi-thumb range slider? Maybe there’s a control that calls for a visual design or proposed user experience that would require too much fighting with a native control’s behavior to be worth the level of effort to implement. Here’s where we need to take another approach. Using ARIA when appropriate Sometimes we have no other option than to roll up our sleeves and start building custom form controls from scratch. Fair warning though: just because we’re not leveraging a native HTML control as our foundation, it doesn’t mean we have carte blanche to throw semantics out the window. Enter Accessible Rich Internet Applications (ARIA). ARIA is a set of attributes that can modify existing elements, or extend HTML to include roles, properties and states that aren’t native to the language. While divs and spans have no meaningful semantic information for us to leverage, with help from the ARIA specification and ARIA Authoring Practices we can incorporate these elements to help create the UI that we need while still following the first rule of Using ARIA: If you can use a native HTML element or attribute with the semantics and behavior you require already built in, instead of re-purposing an element and adding an ARIA role, state or property to make it accessible, then do so. By using these documents as guidelines, and testing our custom controls with people of various abilities, we can do our best to make sure a custom control performs as expected for as many people as possible. Exceptions to the rule One example of a control that allows for an exception to the first rule of Using ARIA would be a switch control. Switches and checkboxes are similar components, in that they have both on/checked and off/unchecked states. However, checkboxes are often expected within the context of forms, or used to filter search queries on e-commerce sites. Switches are typically used to instantly enable or deactivate a particular setting at a component or app-based level, as this is their behavior in the native mobile apps in which they were popularized. While a switch control could be created by visually restyling a checkbox, this does not automatically mean that the underlying semantics and functionality will match the visual representation of the control. For example, the following CodePen restyles checkboxes to look like a switch control, but the semantics of the checkboxes remain which communicate a different way of interacting with the control than what you might expect from a native switch control. See the Pen Switch Boxes - custom styled checkboxes posing as switches by Scott (@scottohara) on CodePen. https://codepen.io/scottohara/pen/XyvoeE/ By adding a role="switch" to these checkboxes, we can repurpose the inherent checked/unchecked states of the native control, it’s inherent ability to be focused by Tab key, and Space key to toggle state. But while this is a valid approach to take in building a switch, how does this actually match up to reality? Does it pass the test(s)? Whether deconstructing form controls to fully restyle them, or leveraging them and other HTML elements as a base to expand on, or create, a non-native form control, building it is just the start. We must test that what we’ve restyled or rebuilt works the way people expect it to, if not better. What we must do here is run a gamut of comparative tests to document the functionality and usability of native form controls. For example: Is the control implemented in all supported browsers? If not: where are the gaps? Will it be necessary to implement a custom solution for the situations that degrade to a standard text field? If so: is each browser’s implementation a good user experience? Is there room for improvement that can be tested against the native baseline? Test with multiple input devices. Where the control is implemented, what is the quality of the user experience when using different input devices, such as mouse, touchscreen, keyboard, speech recognition or switch device, to name a few. You’ll find some HTML5 controls (like date pickers and number spinners) have additional UI elements that may not be announced to AT, or even allow keyboard accessibility. Often these controls can be adjusted by other means, such as text entry, or using arrow keys to increase or decrease values. If restyling or recreating a custom version of a control like these, it may make sense to maintain these native experiences as well. How well does the control take to custom styles? If a control can be styled enough to not need to be rebuilt from scratch, that’s great! But make sure that there are no adverse affects on the accessibility of it. For instance, range sliders can be restyled and maintain their functionality and accessibility. However, elements like progress bars can be negatively affected by direct styling. Always test with different browser and AT pairings to ensure nothing is lost when controls are restyled. Do specifications match reality? If recreating controls to get around native limitations, such as the inability to style the options of a select element, or requiring a Switch control which is not native to HTML, do your solutions match user expectations? For instance, selects have unique picker interfaces on touch devices. And switches have varied levels of support for different browser and screen reader pairings. Test with real people, and check your analytics. If these experiences don’t match people’s expectations, then maybe another solution is in order? Wrapping up While styling form controls is definitely easier than it’s ever been, that doesn’t mean that it’s at all simple, nor will it likely ever be. The level of difficulty you’re going to face is going to depend entirely on what it is you’re hoping to style, add-on to, or recreate. And even if you build your custom control exactly to specification, you’ll still be reliant on browsers and assistive technologies being able to fully understand the component they’ve been presented. Forms and their controls are an incredibly important part of what we need the Internet for. Paying bills, scheduling appointments, ordering groceries, renewing your license or even ordering gifts for the holidays. These are all important tasks that people should be able to complete with as little effort as possible. Especially since for some, completing these tasks online might be their only option. 2018 didn’t end up being the year we got full customization of form controls sorted out. But that’s OK. If we can continue to mindfully work with what we have, and instead challenge ourselves to follow inclusive design principles, well thought out Form Design Patterns, and solve problems with an accessibility first approach, we may come to realize that we can get along just fine without fully branded drop downs. And hey. There’s always next year, right? 2018 Scott O'Hara scottohara 2018-12-13T00:00:00+00:00 https://24ways.org/2018/inclusive-considerations-when-restyling-form-controls/ code
256 Develop Your Naturalist Superpowers with Observable Notebooks and iNaturalist We’re going to level up your knowledge of what animals you might see in an area at a particular time of year - a skill every naturalist* strives for - using technology! Using iNaturalist and Observable Notebooks we’re going to prototype seasonality graphs for particular species in an area, and automatically create a guide to what animals you might see in each month. *(a Naturalist is someone who likes learning about nature, not someone who’s a fan of being naked, that’s a ‘Naturist’… different thing!) Looking for critters in rocky intertidal habitats One of my favourite things to do is going rockpooling, or as we call it over here in California, ‘tidepooling’. Amounting to the same thing, it’s going to a beach that has rocks where the tide covers then uncovers little pools of water at different times of the day. All sorts of fun creatures and life can be found in this ‘rocky intertidal habitat’ A particularly exciting creature that lives here is the Nudibranch, a type of super colourful ‘sea slug’. There are over 3000 species of Nudibranch worldwide. (The word “nudibranch” comes from the Latin nudus, naked, and the Greek βρανχια / brankhia, gills.) ​ They are however quite tricky to find! Even though they are often brightly coloured and interestingly shaped, some of them are very small, and in our part of the world in the Bay Area in California their appearance in our rockpools is seasonal. We see them more often in Summer months, despite the not-as-low tides as in our Winter and Spring seasons. My favourite place to go tidepooling here is Pillar Point in Half Moon bay (at other times of the year more famously known for the surf competition ‘Mavericks’). The rockpools there are rich in species diversity, of varied types and water-coverage habitat zones as well as being relatively accessible. ​ I was rockpooling at Pillar Point recently with my parents and we talked to a lady who remarked that she hadn’t seen any Nudibranchs on her visit this time. I realised that having an idea of what species to find where, and at what time of year is one of the many superpower goals of every budding Naturalist. Using technology and the croudsourced species observations of the iNaturalist community we can shortcut our way to this superpower! Finding nearby animals with iNaturalist We’re going to be getting our information about what animals you can see in Pillar Point using iNaturalist. iNaturalist is a really fun platform that helps connect people to nature and report their findings of life in the outdoors. It is also a community of nature-loving people who help each other identify and confirm those observations. iNaturalist is a project run as a joint initiative by the California Academy of Sciences and the National Geographic Society. I’ve been using iNaturalist for over two years to record and identify plants and animals that I’ve found in the outdoors. I use their iPhone app to upload my pictures, which then uses machine learning algorithms to make an initial guess at what it is I’ve seen. The community is really active, and I often find someone else has verified or updated my species guess pretty soon after posting. This process is great because once an observation has been identified by at least two people it becomes ‘verified’ and is considered research grade. Research grade observations get exported and used by scientists, as well as being indexed by the Global Biodiversity Information Facility, GBIF. ​ iNaturalist has a great API and API explorer, which makes interacting and prototyping using iNaturalist data really fun. For example, if you go to the API explorer and expand the Observations : Search and fetch section and then the GET /observations API, you get a selection of input boxes that allow you to play with options that you can then pass to the API when you click the ‘Try it out’ button. ​ You’ll then get a URL that looks a bit like https://api.inaturalist.org/v1/observations?captive=false &geo=true&verifiable=true&taxon_id=47113&lat=37.495461&lng=-122.499584 &radius=5&order=desc&order_by=created_at which you can call and interrrogate using a programming language of your choice. If you would like to see an all-JavaScript application that uses the iNaturalist API, take a look at OwlsNearMe.com which Simon and I built one weekend earlier this year. It gets your location and shows you all iNaturalist observations of owls near you and lists which species you are likely to see (not adjusted for season). Rapid development using Observable Notebooks We’re going to be using Observable Notebooks to prototype our examples, pulling data down from iNaturalist. I really like using visual notebooks like Observable, they are great for learning and building things quickly. You may be familiar with Jupyter notebooks for Python which is similar but takes a bit of setup to get going - I often use these for prototyping too. Observable is amazing for querying and visualising data with JavaScript and since it is a hosted product it doesn’t require any setup at all. You can follow along and play with this example on my Observable notebook. If you create an account there you can fork my notebook and create your own version of this example. Each ‘notebook’ consists of a page with a column of ‘cells’, similar to what you get in a spreadsheet. A cell can contain Markdown text or JavaScript code and the output of evaluating the cell appears above the code that generated it. There are lots of tutorials out there on Observable Notebooks, I like this code introduction one from Observable (and D3) creator Mike Bostock. Developing your Naturalist superpowers If you have an idea of what plants and critters you might see in a place at the time you visit, you can hone in on what you want to study and train your Naturalist eye to better identify the life around you. For our example, we care about wildlife we can see at Pillar Point, so we need a way of letting the iNaturalist API know which area we are interested in. We could use a latitide, longitude and radius for this, but a rectangular bounding box is a better shape for the reef. We can use this tool to draw the area we want to search within: boundingbox.klokantech.com ​ The tool lets you export the bounding box in several forms using the dropdown at the bottom left under the map givese We are going to use the ‘DublinCore’ format as it’s closest to the format needed by the iNaturalist API. westlimit=-122.50542; southlimit=37.492805; eastlimit=-122.492738; northlimit=37.499811 A quick map primer: The higher the latitude the more north it is The lower the latitude the more south it is Latitude 0 = the equator The higher the longitude the more east it is of Greenwich The lower the longitude the more west it is of Greenwich Longitude 0 = Greenwich In the iNaturalst API we want to use the parameters nelat, nelng, swlat, swlng to create a query that looks inside a bounding box of Pillar Point near Half Moon Bay in California: nelat = highest latitude = north limit = 37.499811 nelng = highest longitude = east limit = -122.492738 swlat = smallest latitude = south limit = 37.492805 swlng = smallest longitude = west limit = 122.50542 As API parameters these look like this: ?nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=122.50542 These parameters in this format can be used for most of the iNaturalist API methods. Nudibranch seasonality in Pillar Point We can use the iNaturalist observation_histogram API to get a count of Nudibranch observations per week-of-year across all time and within our Pillar Point bounding box. In addition to the geographic parameters that we just worked out, we are also sending the taxon_id of 47113, which is iNaturalists internal number associated with the Nudibranch taxon. By using this we can get all species which are under the parent ‘Order Nudibranchia’. Another useful piece of naturalist knowledge is understanding the biological classification scheme of Taxanomic Rank - roughly, when a species has a Latin name of two words eg ‘Glaucus Atlanticus’ the first Latin word is the ‘Genus’ like a family name ‘Glaucus’, and the second word identifies that particular species, like a given name ‘Atlanticus’. The two Latin words together indicate a specific species, the term we use colloquially to refer to a type of animal often differs wildly region to region, and sometimes the same common name in two countries can refer to two different species. The common names for the Glaucus Atlanticus (which incidentally is my favourite sea slug) include: sea swallow, blue angel, blue glaucus, blue dragon, blue sea slug and blue ocean slug! Because this gets super confusing, Scientists like using this Latin name format instead. The following piece of code asks the iNaturalist Histogram API to return per-week counts for verified observations of Nudibranchs within our Pillar Point bounding box: pillar_point_counts_per_week = fetch( "https://api.inaturalist.org/v1/observations/histogram?taxon_id=47113&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&date_field=observed&interval=week_of_year&verifiable=true" ).then(response => { return response.json(); }) Our next step is to take this data and draw a graph! We’ll be using Vega-Lite for this, which is a fab JavaScript graphing libary that is also easy and fun to use with Observable Notebooks. (Here is a great tutorial on exploring data and drawing graphs with Observable and Vega-Lite) The iNaturalist API returns data that looks like this: { "total_results": 53, "page": 1, "per_page": 53, "results": { "week_of_year": { "1": 136, "2": 20, "3": 150, "4": 65, "5": 186, "6": 74, "7": 47, "8": 87, "9": 64, "10": 56, But for our Vega-Lite graph we need data that looks like this: [{ "week": "01", "value": 136 }, { "week": "02", "value": 20 }, ...] We can convert what we get back from the API to the second format using a loop that iterates over the object keys: objects_to_plot = { let objects = []; Object.keys(pillar_point_counts_per_week.results.week_of_year).map(function(week_index) { objects.push({ week: `Wk ${week_index.toString()}`, observations: pillar_point_counts_per_week.results.week_of_year[week_index] }); }) return objects; } We can then plug this into Vega-Lite to draw us a graph: vegalite({ data: {values: objects_to_plot}, mark: "bar", encoding: { x: {field: "week", type: "nominal", sort: null}, y: {field: "observations", type: "quantitative"} }, width: width * 0.9 }) It’s worth noting that we have a lot of observations of Nudibranchs particularly at Pillar Point due in no small part to the intertidal monitoring research that Alison Young and Rebecca Johnson facilitate for the California Achademy of Sciences. So, what if we want to look for the seasonality of observations of a particular species of adorable sea slug? We want our interface to have a select box with a list of all the species you might find at any time of year. We can do this using the species_counts API to create us an object with the iNaturalist species ID and common & Latin names. pillar_point_nudibranches = { let api_results = await fetch( "https://api.inaturalist.org/v1/observations/species_counts?taxon_id=47113&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&date_field=observed&verifiable=true" ).then(r => r.json()) let species_list = api_results.results.map(i => ({ value: i.taxon.id, label: `${i.taxon.preferred_common_name} (${i.taxon.name})` })); return species_list } We can create an interactive select box by importing code from Jeremy Ashkanas’ Observable Notebook: add import {select} from "@jashkenas/inputs" to a cell anywhere in our notebook. Observable is magic: like a spreadsheet, the order of the cells doesn’t matter - if one cell is referenced by any other cell then when that cell updates all the other cells refresh themselves. You can also import and reference one notebook from another! viewof select_species = select({ title: "Which Nudibranch do you want to see seasonality for?", options: [{value: "", label: "All the Nudibranchs!"}, ...pillar_point_nudibranches], value: "" }) Then we go back to our old favourite, the histogram API just like before, only this time we are calling it with the value created by our select box ${select_species} as taxon_id instead of the number 47113. pillar_point_counts_per_month_per_species = fetch( `https://api.inaturalist.org/v1/observations/histogram?taxon_id=${select_species}&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&date_field=observed&interval=month_of_year&verifiable=true` ).then(r => r.json()) Now for the fun graph bit! As we did before, we re-format the result of the API into a format compatible with Vega-Lite: objects_to_plot_species_month = { let objects = []; Object.keys(pillar_point_counts_per_month_per_species.results.month_of_year).map(function(month_index) { objects.push({ month: (new Date(2018, (month_index - 1), 1)).toLocaleString("en", {month: "long"}), observations: pillar_point_counts_per_month_per_species.results.month_of_year[month_index] }); }) return objects; } (Note that in the above code we are creating a date object with our specific month in, and using toLocalString() to get the longer English name for the month. Because the JavaScript Date object counts January as 0, we use month_index -1 to get the correct month) And we draw the graph as we did before, only now if you interact with the select box in Observable the graph will dynamically update! vegalite({ data: {values: objects_to_plot_species_month}, mark: "bar", encoding: { x: {field: "month", type: "nominal", sort:null}, y: {field: "observations", type: "quantitative"} }, width: width * 0.9 }) Now we can see when is the best time of year to plan to go tidepooling in Pillar Point if we want to find a specific species of Nudibranch. ​ This tool is great for planning when we to go rockpooling at Pillar Point, but what about if you are going this month and want to pre-train your eye with what to look for in order to impress your friends with your knowledge of Nudibranchs? Well… we can create ourselves a dynamic guide that you can with a list of the species, their photo, name and how many times they have been observed in that month of the year! Our select box this time looks as follows, simpler than before but assigning the month value to the variable selected_month. viewof selected_month = select({ title: "When do you want to see Nudibranchs?", options: [ { label: "Whenever", value: "" }, { label: "January", value: "1" }, { label: "February", value: "2" }, { label: "March", value: "3" }, { label: "April", value: "4" }, { label: "May", value: "5" }, { label: "June", value: "6" }, { label: "July", value: "7" }, { label: "August", value: "8" }, { label: "September", value: "9" }, { label: "October", value: "10" }, { label: "November", value: "11" }, { label: "December", value: "12" }, ], value: "" }) We then can use the species_counts API to get all the relevant information about which species we can see in month=${selected_month}. We’ll be able to reference this response object and its values later with the variable we just created, eg: all_species_data.results[0].taxon.name. all_species_data = fetch( `https://api.inaturalist.org/v1/observations/species_counts?taxon_id=47113&month=${selected_month}&nelat=37.499811&nelng=-122.492738&swlat=37.492805&swlng=-122.50542&verifiable=true` ).then(r => r.json()) You can render HTML directly in a notebook cell using Observable’s html tagged template literal: <style> .collection { margin-top: 2em } .collection .species { display: inline-block; width: 9em; margin-bottom: 2em; } .collection .species-name { font-size: 1em; margin: 0; padding: 0 } .collection .species-count { margin: 0 0 0.3em 0; padding: 0; font-size: 0.75em; color: #999; font-style: italic; } .collection img { display: block; width: 100% } .collection select { font-size: 1.5em; } </style> <h2>If you go to Pillar Point ${ {"": "", "1":"in January", "2":"in Febrary", "3":"in March", "4":"in April", "5":"in May", "6":"in June", "7":"in July", "8":"in August", "9":"in September", "10":"in October", "11":"in November", "12":"in December", }[selected_month] } you might see…</h2> <div class="collection"> ${all_species_data.results.map(s => `<div class="species"><h3 class="species-name">${s.taxon.name}</h3> <p class="species-count">Seen ${s.count} times</p> <img src="${s.taxon.default_photo.medium_url}"></div> `)} </div> These few lines of HTML are all you need to get this exciting dynamic guide to what Nudibranchs you will see in each month! ​ Play with it yourself in this Observable Notebook. Conclusion I hope by playing with these examples you have an idea of how powerful it can be to prototype using Observable Notebooks and how you can use the incredible crowdsourced community data and APIs from iNaturalist to augment your naturalist skills and impress your friends with your new ‘knowledge of nature’ superpower. Lastly I strongly encourage you to get outside on a low tide to explore your local rocky intertidal habitat, and all the amazing critters that live there. Here is a great introduction video to tidepooling / rockpooling, by Rebecca Johnson and Alison Young from the California Academy of Sciences. 2018 Natalie Downe nataliedowne 2018-12-18T00:00:00+00:00 https://24ways.org/2018/observable-notebooks-and-inaturalist/ code
260 The Art of Mathematics: A Mandala Maker Tutorial In front-end development, there’s often a great deal of focus on tools that aim to make our work more efficient. But what if you’re new to web development? When you’re just starting out, the amount of new material can be overwhelming, particularly if you don’t have a solid background in Computer Science. But the truth is, once you’ve learned a little bit of JavaScript, you can already make some pretty impressive things. A couple of years back, when I was learning to code, I started working on a side project. I wanted to make something colorful and fun to share with my friends. This is what my app looks like these days: Mandala Maker user interface The coolest part about it is the fact that it’s a tool: anyone can use it to create something original and brand new. In this tutorial, we’ll build a smaller version of this app – a symmetrical drawing tool in ES5, JavaScript and HTML5. The tutorial app will have eight reflections, a color picker and a Clear button. Once we’re done, you’re on your own and can tweak it as you please. Be creative! Preparations: a blank canvas The first thing you’ll need for this project is a designated drawing space. We’ll use the HTML5 canvas element and give it a width and a height of 600px (you can set the dimensions to anything else if you like). Files Create 3 files: index.html, styles.css, main.js. Don’t forget to include your JS and CSS files in your HTML. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <link rel="stylesheet" type="text/css" href="style.css"> <script src="main.js"></script> </head> <body onload="init()"> <canvas width="600" height="600"> <p>Your browser doesn't support canvas.</p> </canvas> </body> </html> I’ll ask you to update your HTML file at a later point, but the CSS file we’ll start with will stay the same throughout the project. This is the full CSS we are going to use: body { background-color: #ccc; text-align: center; } canvas { touch-action: none; background-color: #fff; } button { font-size: 110%; } Next steps We are done with our preparations and ready to move on to the actual tutorial, which is made up of 4 parts: Building a simple drawing app with one line and one color Adding a Clear button and a color picker Adding more functionality: 2 line drawing (add the first reflection) Adding more functionality: 8 line drawing (add 6 more reflections!) Interactive demos This tutorial will be accompanied by four CodePens, one at the end of each section. In my own app I originally used mouse events, and only added touch events when I realized mobile device support was (A) possible, and (B) going to make my app way more accessible. For the sake of code simplicity, I decided that in this tutorial app I will only use one event type, so I picked a third option: pointer events. These are supported by some desktop browsers and some mobile browsers. An up-to-date version of Chrome is probably your best bet. Part 1: A simple drawing app Let’s get started with our main.js file. Our basic drawing app will be made up of 6 functions: init, drawLine, stopDrawing, recordPointerLocation, handlePointerMove, handlePointerDown. It also has nine variables: var canvas, context, w, h, prevX = 0, currX = 0, prevY = 0, currY = 0, draw = false; The variables canvas and context let us manipulate the canvas. w is the canvas width and h is the canvas height. The four coordinates are used for tracking the current and previous location of the pointer. A short line is drawn between (prevX, prevY) and (currX, currY) repeatedly many times while we move the pointer upon the canvas. For your drawing to appear, three conditions must be met: the pointer (be it a finger, a trackpad or a mouse) must be down, it must be moving and the movement has to be on the canvas. If these three conditions are met, the boolean draw is set to true. 1. init Responsible for canvas set up, this listens to pointer events and the location of their coordinates and sets everything in motion by calling other functions, which in turn handle touch and movement events. function init() { canvas = document.querySelector("canvas"); context = canvas.getContext("2d"); w = canvas.width; h = canvas.height; canvas.onpointermove = handlePointerMove; canvas.onpointerdown = handlePointerDown; canvas.onpointerup = stopDrawing; canvas.onpointerout = stopDrawing; } 2. drawLine This is called to action by handlePointerMove() and draws the pointer path. It only runs if draw = true. It uses canvas methods you can read about in the canvas API documentation. You can also learn to use the canvas element in this tutorial. lineWidth and linecap set the properties of our paint brush, or digital pen, but pay attention to beginPath and closePath. Between those two is where the magic happens: moveTo and lineTo take canvas coordinates as arguments and draw from (a,b) to (c,d), which is to say from (prevX,prevY) to (currX,currY). function drawLine() { var a = prevX, b = prevY, c = currX, d = currY; context.lineWidth = 4; context.lineCap = "round"; context.beginPath(); context.moveTo(a, b); context.lineTo(c, d); context.stroke(); context.closePath(); } 3. stopDrawing This is used by init when the pointer is not down (onpointerup) or is out of bounds (onpointerout). function stopDrawing() { draw = false; } 4. recordPointerLocation This tracks the pointer’s location and stores its coordinates. Also, you need to know that in computer graphics the origin of the coordinate space (0,0) is at the top left corner, and all elements are positioned relative to it. When we use canvas we are dealing with two coordinate spaces: the browser window and the canvas itself. This function converts between the two: it subtracts the canvas offsetLeft and offsetTop so we can later treat the canvas as the only coordinate space. If you are confused, read more about it. function recordPointerLocation(e) { prevX = currX; prevY = currY; currX = e.clientX - canvas.offsetLeft; currY = e.clientY - canvas.offsetTop; } 5. handlePointerMove This is set by init to run when the pointer moves. It checks if draw = true. If so, it calls recordPointerLocation to get the path and drawLine to draw it. function handlePointerMove(e) { if (draw) { recordPointerLocation(e); drawLine(); } } 6. handlePointerDown This is set by init to run when the pointer is down (finger is on touchscreen or mouse it clicked). If it is, calls recordPointerLocation to get the path and sets draw to true. That’s because we only want movement events from handlePointerMove to cause drawing if the pointer is down. function handlePointerDown(e) { recordPointerLocation(e); draw = true; } Finally, we have a working drawing app. But that’s just the beginning! See the Pen Mandala Maker Tutorial: Part 1 by Hagar Shilo (@hagarsh) on CodePen. Part 2: Add a Clear button and a color picker Now we’ll update our HTML file, adding a menu div with an input of the type and class color and a button of the class clear. <body onload="init()"> <canvas width="600" height="600"> <p>Your browser doesn't support canvas.</p> </canvas> <div class="menu"> <input type="color" class="color" /> <button type="button" class="clear">Clear</button> </div> </body> Color picker This is our new color picker function. It targets the input element by its class and gets its value. function getColor() { return document.querySelector(".color").value; } Up until now, the app used a default color (black) for the paint brush/digital pen. If we want to change the color we need to use the canvas property strokeStyle. We’ll update drawLine by adding strokeStyle to it and setting it to the input value by calling getColor. function drawLine() { //...code... context.strokeStyle = getColor(); context.lineWidth = 4; context.lineCap = "round"; //...code... } Clear button This is our new Clear function. It responds to a button click and displays a dialog asking the user if she really wants to delete the drawing. function clearCanvas() { if (confirm("Want to clear?")) { context.clearRect(0, 0, w, h); } } The method clearRect takes four arguments. The first two (0,0) mark the origin, which is actually the top left corner of the canvas. The other two (w,h) mark the full width and height of the canvas. This means the entire canvas will be erased, from the top left corner to the bottom right corner. If we were to give clearRect a slightly different set of arguments, say (0,0,w/2,h), the result would be different. In this case, only the left side of the canvas would clear up. Let’s add this event handler to init: function init() { //...code... canvas.onpointermove = handleMouseMove; canvas.onpointerdown = handleMouseDown; canvas.onpointerup = stopDrawing; canvas.onpointerout = stopDrawing; document.querySelector(".clear").onclick = clearCanvas; } See the Pen Mandala Maker Tutorial: Part 2 by Hagar Shilo (@hagarsh) on CodePen. Part 3: Draw with 2 lines It’s time to make a line appear where no pointer has gone before. A ghost line! For that we are going to need four new coordinates: a', b', c' and d' (marked in the code as a_, b_, c_ and d_). In order for us to be able to add the first reflection, first we must decide if it’s going to go over the y-axis or the x-axis. Since this is an arbitrary decision, it doesn’t matter which one we choose. Let’s go with the x-axis. Here is a sketch to help you grasp the mathematics of reflecting a point across the x-axis. The coordinate space in my sketch is different from my explanation earlier about the way the coordinate space works in computer graphics (more about that in a bit!). Now, look at A. It shows a point drawn where the pointer hits, and B shows the additional point we want to appear: a reflection of the point across the x-axis. This is our goal. A sketch illustrating the mathematics of reflecting a point. What happens to the x coordinates? The variables a/a' and c/c' correspond to prevX and currX respectively, so we can call them “the x coordinates”. We are reflecting across x, so their values remain the same, and therefore a' = a and c' = c. What happens to the y coordinates? What about b' and d'? Those are the ones that have to change, but in what way? Thanks to the slightly misleading sketch I showed you just now (of A and B), you probably think that the y coordinates b' and d' should get the negative values of b and d respectively, but nope. This is computer graphics, remember? The origin is at the top left corner and not at the canvas center, and therefore we get the following values: b = h - b, d' = h - d, where h is the canvas height. This is the new code for the app’s variables and the two lines: the one that fills the pointer’s path and the one mirroring it across the x-axis. function drawLine() { var a = prevX, a_ = a, b = prevY, b_ = h-b, c = currX, c_ = c, d = currY, d_ = h-d; //... code ... // Draw line #1, at the pointer's location context.moveTo(a, b); context.lineTo(c, d); // Draw line #2, mirroring the line #1 context.moveTo(a_, b_); context.lineTo(c_, d_); //... code ... } In case this was too abstract for you, let’s look at some actual numbers to see how this works. Let’s say we have a tiny canvas of w = h = 10. Now let a = 3, b = 2, c = 4 and d = 3. So b' = 10 - 2 = 8 and d' = 10 - 3 = 7. We use the top and the left as references. For the y coordinates this means we count from the top, and 8 from the top is also 2 from the bottom. Similarly, 7 from the top is 3 from the bottom of the canvas. That’s it, really. This is how the single point, and a line (not necessarily a straight one, by the way) is made up of many, many small segments that are similar to point in behavior. If you are still confused, I don’t blame you. Here is the result. Draw something and see what happens. See the Pen Mandala Maker Tutorial: Part 3 by Hagar Shilo (@hagarsh) on CodePen. Part 4: Draw with 8 lines I have made yet another confusing sketch, with points C and D, so you understand what we’re trying to do. Later on we’ll look at points E, F, G and H as well. The circled point is the one we’re adding at each particular step. The circled point at C has the coordinates (-3,2) and the circled point at D has the coordinates (-3,-2). Once again, keep in mind that the origin in the sketches is not the same as the origin of the canvas. A sketch illustrating points C and D. This is the part where the math gets a bit mathier, as our drawLine function evolves further. We’ll keep using the four new coordinates: a', b', c' and d', and reassign their values for each new location/line. Let’s add two more lines in two new locations on the canvas. Their locations relative to the first two lines are exactly what you see in the sketch above, though the calculation required is different (because of the origin points being different). function drawLine() { //... code ... // Reassign values a_ = w-a; b_ = b; c_ = w-c; d_ = d; // Draw the 3rd line context.moveTo(a_, b_); context.lineTo(c_, d_); // Reassign values a_ = w-a; b_ = h-b; c_ = w-c; d_ = h-d; // Draw the 4th line context.moveTo(a_, b_); context.lineTo(c_, d_); //... code ... What is happening? You might be wondering why we use w and h as separate variables, even though we know they have the same value. Why complicate the code this way for no apparent reason? That’s because we want the symmetry to hold for a rectangular canvas as well, and this way it will. Also, you may have noticed that the values of a' and c' are not reassigned when the fourth line is created. Why write their value assignments twice? It’s for readability, documentation and communication. Maintaining the quadruple structure in the code is meant to help you remember that all the while we are dealing with two y coordinates (current and previous) and two x coordinates (current and previous). What happens to the x coordinates? As you recall, our x coordinates are a (prevX) and c (currX). For the third line we are adding, a' = w - a and c' = w - c, which means… For the fourth line, the same thing happens to our x coordinates a and c. What happens to the y coordinates? As you recall, our y coordinates are b (prevY) and d (currY). For the third line we are adding, b' = b and d' = d, which means the y coordinates are the ones not changing this time, making this is a reflection across the y-axis. For the fourth line, b' = h - b and d' = h - d, which we’ve seen before: that’s a reflection across the x-axis. We have four more lines, or locations, to define. Note: the part of the code that’s responsible for drawing a micro-line between the newly calculated coordinates is always the same: context.moveTo(a_, b_); context.lineTo(c_, d_); We can leave it out of the next code snippets and just focus on the calculations, i.e, the reassignments. Once again, we need some concrete examples to see where we’re going, so here’s another sketch! The circled point E has the coordinates (2,3) and the circled point F has the coordinates (2,-3). The ability to draw at A but also make the drawing appear at E and F (in addition to B, C and D that we already dealt with) is the functionality we are about to add to out code. A sketch illustrating points E and F. This is the code for E and F: // Reassign for 5 a_ = w/2+h/2-b; b_ = w/2+h/2-a; c_ = w/2+h/2-d; d_ = w/2+h/2-c; // Reassign for 6 a_ = w/2+h/2-b; b_ = h/2-w/2+a; c_ = w/2+h/2-d; d_ = h/2-w/2+c; Their x coordinates are identical and their y coordinates are reversed to one another. This one will be out final sketch. The circled point G has the coordinates (-2,3) and the circled point H has the coordinates (-2,-3). A sketch illustrating points G and H. This is the code: // Reassign for 7 a_ = w/2-h/2+b; b_ = w/2+h/2-a; c_ = w/2-h/2+d; d_ = w/2+h/2-c; // Reassign for 8 a_ = w/2-h/2+b; b_ = h/2-w/2+a; c_ = w/2-h/2+d; d_ = h/2-w/2+c; //...code... } Once again, the x coordinates of these two points are the same, while the y coordinates are different. And once again I won’t go into the full details, since this has been a long enough journey as it is, and I think we’ve covered all the important principles. But feel free to play around with the code and change it. I really recommend commenting out the code for some of the points to see what your drawing looks like without them. I hope you had fun learning! This is our final app: See the Pen Mandala Maker Tutorial: Part 4 by Hagar Shilo (@hagarsh) on CodePen. 2018 Hagar Shilo hagarshilo 2018-12-02T00:00:00+00:00 https://24ways.org/2018/the-art-of-mathematics/ code
263 Securing Your Site like It’s 1999 Running a website in the early years of the web was a scary business. The web was an evolving medium, and people were finding new uses for it almost every day. From book stores to online auctions, the web was an expanding universe of new possibilities. As the web evolved, so too did the knowledge of its inherent security vulnerabilities. Clever tricks that were played on one site could be copied on literally hundreds of other sites. It was a normal sight to log in to a website to find nothing working because someone had breached its defences and deleted its database. Lessons in web security in those days were hard-earned. What follows are examples of critical mistakes that brought down several early websites, and how you can help protect yourself and your team from the same fate. Bad input validation: Trusting anything the user sends you Our story begins in the most unlikely place: Animal Crossing. Animal Crossing was a 2001 video game set in a quaint town, filled with happy-go-lucky inhabitants that co-exist peacefully. Like most video games, Animal Crossing was the subject of many fan communities on the early web. One such unofficial web forum was dedicated to players discussing their adventures in Animal Crossing. Players could trade secrets, ask for help, and share pictures of their virtual homes. This might sound like a model community to you, but you would be wrong. One day, a player discovered a hidden field in the forum’s user profile form. Normally, this page allows users to change their name, their password, or their profile photo. This person discovered that the hidden field contained their unique user ID, which identifies them when the forum’s backend saves profile changes to its database. They discovered that by modifying the form to change the user ID, they could make changes to any other player’s profile. Needless to say, this idyllic online community descended into chaos. Users changed each other’s passwords, deleted each other’s messages, and attacked each-other under the cover of complete anonymity. What happened? There aren’t any official rules for developing software on the web. But if there were, my golden rule would be: Never trust user input. Ever. Always ask yourself how users will send you data that isn’t what it seems to be. If the nicest community of gamers playing the happiest game on earth can turn on each other, nowhere on the web is safe. Make sure you validate user input to make sure it’s of the correct type (e.g. string, number, JSON string) and that it’s the length that you were expecting. Don’t forget that user input doesn’t become safe once it is stored in your database; any data that originates from outside your network can still be dangerous and must be escaped before it is inserted into HTML. Make sure to check a user’s actions against what they are allowed to do. Create a clear access control policy that defines what actions a user may take, and to whose data they are allowed access to. For example, a newly-registered user should not be allowed to change the user profile of a web forum’s owner. Finally, never rely on client-side validation. Validating user input in the browser is a convenience to the user, not a security measure. Always assume the user has full control over any data sent from the browser and make sure you validate any data sent to your backend from the outside world. SQL injection: Allowing the user to run their own database queries A long time ago, my favourite website was a web forum dedicated to the Final Fantasy video game series. Like the users of the Animal Crossing forum, I’d while away many hours arguing with other people on the internet about my favourite characters, my favourite stories, and the greatest controversies of the day. One day, I noticed people were acting strangely. Users were being uncharacteristically nasty and posting in private areas of the forum they wouldn’t normally have access to. Then messages started disappearing, and user accounts for well-respected people were banned. It turns out someone had discovered a way of logging in to any other user account, using a secret password that allowed them to do literally anything they wanted. What was this password that granted untold power to those who wielded it? ' OR '1'='1 SQL is a computer language that is used to query databases. When you fill out a login form, just like the one above, your username and your password are usually inserted into an SQL query like this: SELECT COUNT(*) FROM USERS WHERE USERNAME='Alice' AND PASSWORD='hunter2' This query selects users from the database that match the username Alice and the password hunter2. If there is at least one user matching record, the user will be granted access. Let’s see what happens when we use our magic password instead! SELECT COUNT(*) FROM USERS WHERE USERNAME='Admin' AND PASSWORD='' OR '1'='1' Does the password look like part of the query to you? That’s because it is! This password is a deliberate attempt to inject our own SQL into the query, hence the term SQL injection. The query is now looking for users matching the username Admin, with a password that is blank, or 1=1. In an SQL query, 1=1 is always true, which makes this query select every single record in the database. As long as the forum software is checking for at least one matching user, it will grant the person logging in access. This password will work for any user registered on the forum! So how can you protect yourself from SQL injection? Never build SQL queries by concatenating strings. Instead, use parameterised query tools. PHP offers prepared statements, and Node.JS has the knex package. Alternatively, you can use an ORM tool, such as Propel or sequelize. Expert help in the form of language features or software tools is a key ally for securing your code. Get all the help you can! Cross site request forgery: Getting other users to do your dirty work for you Do you remember Netflix? Not the Netflix we have now, the Netflix that used to rent you DVDs by mailing them to you. My next story is about how someone managed to convince Netflix users to send him their DVDs - free of charge. Have you ever clicked on a hyperlink, only to find something that you weren’t expecting? If you were lucky, you might have just gotten Rickrolled. If you were unlucky… Let’s just say there are older and fouler things than Rick Astley in the dark places of the web. What if you could convince people to visit a page you controlled? And what if those people were Netflix users, and they were logged in? In 2006, Dave Ferguson did just that. He created a harmless-looking page with an image on it: <img src="http://www.netflix.com/JSON/AddToQueue?movieid=70110672" /> Did you notice the source URL of the image? It’s deliberately crafted to add a particular DVD to your queue. Sprinkle in a few more requests to change the user’s name and shipping address, and you could ship yourself DVDs completely free of charge! This attack is possible when websites unconditionally trust a user’s session cookies without checking where HTTP requests come from. The first check you can make is to verify that a request’s origin and referer headers match the location of the website. These headers can’t be programmatically set. Another check you can use is to add CSRF tokens to your web forms, to verify requests have come from an actual form on your website. Tokens are long, unpredictable, unique strings that are generated by your server and inserted into web forms. When users complete a form, the form data sent to the server can be checked for a recently generated token. This is an effective deterrent of CSRF attacks because CSRF tokens aren’t stored in cookies. You can also set SameSite=Strict when setting cookies with the Set-Cookie HTTP header. This communicates to browsers that cookies are not to be sent with cross-site requests. This is a relatively new feature, though it is well supported in evergreen browsers. Cross site scripting: Someone else’s code running on your website In 2005, Samy Kamkar became famous for having lots of friends. Lots and lots of friends. Samy enjoyed using MySpace which, at the time, was the world’s largest social network. Social networks at that time were more limited than today. For instance, MySpace let you upload photos to your photo gallery, but capped the limit at twelve. Twelve photos. At least you didn’t have to wade through photos of avocado toast back then… Samy discovered that MySpace also locked down the kinds of content that you could post on your MySpace page. He discovered he could inject <img /> and <div /> tags into his headline, but <script /> was filtered. MySpace wasn’t about to let someone else run their own code on MySpace. Intrigued, Samy set about finding out exactly what he could do with <img /> and <div /> tags. He found that you could add style properties to <div /> tags to style them with CSS. <div style="background:url('javascript:alert(1)')"> This code only worked in Internet Explorer and in some versions of Safari, but that was plenty of people to befriend. However, MySpace was prepared for this: they also filtered the word javascript from <div />. <div style="background:url('java script:alert(1)')"> Samy discovered that by inserting a line break into his code, MySpace would not filter out the word javascript. The browser would continue to run the code just fine! Samy had now broken past MySpace’s first line of defence and was able to start running code on his profile page. Now he started looking at what he could do with that code. alert(document.body.innerHTML) Samy wondered if he could inspect the page’s source to find the details of other MySpace users to befriend. To do this, you would normally use document.body.innerHTML, but MySpace had filtered this too. alert(eval('document.body.inne' + 'rHTML')) This isn’t a problem if you build up JavaScript code inside a string and execute it using the eval() function. This trick also worked with XMLHttpRequest.onReadyStateChange, which allowed Samy to send friend requests to the MySpace API and install the JavaScript code on his new friends’ pages. One final obstacle stood in his way. The same origin policy is a security mechanism that prevents scripts hosted on one domain interacting with sites hosted on another domain. if (location.hostname == 'profile.myspace.com') { document.location = 'http://www.myspace.com' + location.pathname + location.search } Samy discovered that only the http://www.myspace.com domain would accept his API requests, and requests from http://profile.myspace.com were being blocked by the browser’s same-origin policy. By redirecting the browser to http://www.myspace.com, he discovered that he could load profile pages and successfully make requests to MySpace’s API. Samy installed this code on his profile page, and he waited. Over the course of the next day, over a million people unwittingly installed Samy’s code into their MySpace profile pages and invited their friends. The load of friend requests on MySpace was so large that the site buckled and shut down. It took them two hours to remove Samy’s code and patch the security holes he exploited. Samy was raided by the United States secret service and sentenced to do 90 days of community service. This is the power of installing a little bit of JavaScript on someone else’s website. It is called cross site scripting, and its effects can be devastating. It is suspected that cross-site scripting was to blame for the 2018 British Airways breach that leaked the credit card details of 380,000 people. So how can you help protect yourself from cross-site scripting? Always sanitise user input when it comes in, using a library such as sanitize-html. Open source tools like this benefit from hundreds of hours of work from dozens of experienced contributors. Don’t be tempted to roll your own protection. MySpace was prepared, but they were not prepared enough. It makes no sense to turn this kind of help down. You can also use an auto-escaping templating language to make sure nobody else’s HTML can get into your pages. Both Angular and React will do this for you, and they are extremely convenient to use. You should also implement a content security policy to restrict the domains that content like scripts and stylesheets can be loaded from. Loading content from sites not under your control is a significant security risk, and you should use a CSP to lock this down to only the sources you trust. CSP can also block the use of the eval() function. For content not under your control, consider setting up sub-resource integrity protection. This allows you to add hashes to stylesheets and scripts you include on your website. Hashes are like fingerprints for digital files; if the content changes, so does the fingerprint. Adding hashes will allow your browser to keep your site safe if the content changes without you knowing. npm audit: Protecting yourself from code you don’t own JavaScript and npm run the modern web. Together, they make it easy to take advantage of the world’s largest public registry of open source software. How do you protect yourself from code written by someone you’ve never met? Enter npm audit. npm audit reviews the security of your website’s dependency tree. You can start using it by upgrading to the latest version of npm: npm install npm -g npm audit When you run npm audit, npm submits a description of your dependencies to the Registry, which returns a report of known vulnerabilities for the packages you have installed. If your website has a known cross-site scripting vulnerability, npm audit will tell you about it. What’s more, if the vulnerability has been patched, running npm audit fix will automatically install the patched package for you! Securing your site like it’s 2019 The truth is that since the early days of the web, the stakes of a security breach have become much, much higher. The web is so much more than fandom and mailing DVDs - online banking is now mainstream, social media and dating websites store intimate information about our personal lives, and we are even inviting the internet into our homes. However, we have powerful new allies helping us stay safe. There are more resources than ever before to teach us how to write secure code. Tools like Angular and React are designed with security features baked-in from the start. We have a new generation of security tools like npm audit to watch over our dependencies. As we roll over into 2019, let’s take the opportunity to reflect on the security of the code we write and be grateful for the everything we’ve learned in the last twenty years. 2018 Katie Fenn katiefenn 2018-12-01T00:00:00+00:00 https://24ways.org/2018/securing-your-site-like-its-1999/ code
276 Your jQuery: Now With 67% Less Suck Fun fact: more websites are now using jQuery than Flash. jQuery is an amazing tool that’s made JavaScript accessible to developers and designers of all levels of experience. However, as Spiderman taught us, “with great power comes great responsibility.” The unfortunate downside to jQuery is that while it makes it easy to write JavaScript, it makes it easy to write really really f*&#ing bad JavaScript. Scripts that slow down page load, unresponsive user interfaces, and spaghetti code knotted so deep that it should come with a bottle of whiskey for the next sucker developer that has to work on it. This becomes more important for those of us who have yet to move into the magical fairy wonderland where none of our clients or users view our pages in Internet Explorer. The IE JavaScript engine moves at the speed of an advancing glacier compared to more modern browsers, so optimizing our code for performance takes on an even higher level of urgency. Thankfully, there are a few very simple things anyone can add into their jQuery workflow that can clear up a lot of basic problems. When undertaking code reviews, three of the areas where I consistently see the biggest problems are: inefficient selectors; poor event delegation; and clunky DOM manipulation. We’ll tackle all three of these and hopefully you’ll walk away with some new jQuery batarangs to toss around in your next project. Selector optimization Selector speed: fast or slow? Saying that the power behind jQuery comes from its ability to select DOM elements and act on them is like saying that Photoshop is a really good tool for selecting pixels on screen and making them change color – it’s a bit of a gross oversimplification, but the fact remains that jQuery gives us a ton of ways to choose which element or elements in a page we want to work with. However, a surprising number of web developers are unaware that all selectors are not created equal; in fact, it’s incredible just how drastic the performance difference can be between two selectors that, at first glance, appear nearly identical. For instance, consider these two ways of selecting all paragraph tags inside a <div> with an ID. $("#id p"); $("#id").find("p"); Would it surprise you to learn that the second way can be more than twice as fast as the first? Knowing which selectors outperform others (and why) is a pretty key building block in making sure your code runs well and doesn’t frustrate your users waiting for things to happen. There are many different ways to select elements using jQuery, but the most common ways can be basically broken down into five different methods. In order, roughly, from fastest to slowest, these are: $("#id"); This is without a doubt the fastest selector jQuery provides because it maps directly to the native document.getElementbyId() JavaScript method. If possible, the selectors listed below should be prefaced with an ID selector in conjunction with jQuery’s .find() method to limit the scope of the page that has to be searched (as in the $("#id").find("p") example shown above). $("p");, $("input");, $("form"); and so on Selecting elements by tag name is also fast, since it maps directly to the native document.getElementsByTagname() method. $(".class"); Selecting by class name is a little trickier. While still performing very well in modern browsers, it can cause some pretty significant slowdowns in IE8 and below. Why? IE9 was the first IE version to support the native document.getElementsByClassName() JavaScript method. Older browsers have to resort to using much slower DOM-scraping methods that can really impact performance. $("[attribute=value]"); There is no native JavaScript method for this selector to use, so the only way that jQuery can perform the search is by crawling the entire DOM looking for matches. Modern browsers that support the querySelectorAll() method will perform better in certain cases (Opera, especially, runs these searches much faster than any other browser) but, generally speaking, this type of selector is Slowey McSlowersons. $(":hidden"); Like attribute selectors, there is no native JavaScript method for this one to use. Pseudo-selectors can be painfully slow since the selector has to be run against every element in your search space. Again, modern browsers with querySelectorAll() will perform slightly better here, but try to avoid these if at all possible. If you must use one, try to limit the search space to a specific portion of the page: $("#list").find(":hidden"); But, hey, proof is in the performance testing, right? It just so happens that said proof is sitting right here. Be sure to notice the class selector numbers beside IE7 and 8 compared to other browsers and then wonder how the people on the IE team at Microsoft manage to sleep at night. Yikes. Chaining Almost all jQuery methods return a jQuery object. This means that when a method is run, its results are returned and you can continue executing more methods on them. Rather than writing out the same selector multiple times over, just making a selection once allows multiple actions to be run on it. Without chaining $("#object").addClass("active"); $("#object").css("color","#f0f"); $("#object").height(300); With chaining $("#object").addClass("active").css("color", "#f0f").height(300); This has the dual effect of making your code shorter and faster. Chained methods will be slightly faster than multiple methods made on a cached selector, and both ways will be much faster than multiple methods made on non-cached selectors. Wait… “cached selector”? What is this new devilry? Caching Another easy way to speed up your code that seems to be a mystery to developers is the idea of caching your selectors. Think of how many times you end up writing the same selector over and over again in any project. Every $(".element") selector has to search the entire DOM each time, regardless of whether or not that selector had been previously run. Running the selection once and then storing the results in a variable means that the DOM only has to be searched once. Once the results of a selector have been cached, you can do anything with them. First, run your search (here we’re selecting all of the <li> elements inside <ul id="blocks">): var blocks = $("#blocks").find("li"); Now, you can use the blocks variable wherever you want without having to search the DOM every time. $("#hideBlocks").click(function() { blocks.fadeOut(); }); $("#showBlocks").click(function() { blocks.fadeIn(); }); My advice? Any selector that gets run more than once should be cached. This jsperf test shows just how much faster a cached selector runs compared to a non-cached one (and even throws some chaining love in to boot). Event delegation Event listeners cost memory. In complex websites and apps it’s not uncommon to have a lot of event listeners floating around, and thankfully jQuery provides some really easy methods for handling event listeners efficiently through delegation. In a bit of an extreme example, imagine a situation where a 10×10 cell table needs to have an event listener on each cell; let’s say that clicking on a cell adds or removes a class that defines the cell’s background color. A typical way that this might be written (and something I’ve often seen during code reviews) is like so: $('table').find('td').click(function() { $(this).toggleClass('active'); }); jQuery 1.7 has provided us with a new event listener method, .on(). It acts as a utility that wraps all of jQuery’s previous event listeners into one convenient method, and the way you write it determines how it behaves. To rewrite the above .click() example using .on(), we’d simply do the following: $('table').find('td').on('click',function() { $(this).toggleClass('active'); }); Simple enough, right? Sure, but the problem here is that we’re still binding one hundred event listeners to our page, one to each individual table cell. A far better way to do things is to create one event listener on the table itself that listens for events inside it. Since the majority of events bubble up the DOM tree, we can bind a single event listener to one element (in this case, the <table>) and wait for events to bubble up from its children. The way to do this using the .on() method requires only one change from our code above: $('table').on('click','td',function() { $(this).toggleClass('active'); }); All we’ve done is moved the td selector to an argument inside the .on() method. Providing a selector to .on() switches it into delegation mode, and the event is only fired for descendants of the bound element (table) that match the selector (td). With that one simple change, we’ve gone from having to bind one hundred event listeners to just one. You might think that the browser having to do one hundred times less work would be a good thing and you’d be completely right. The difference between the two examples above is staggering. (Note that if your site is using a version of jQuery earlier than 1.7, you can accomplish the very same thing using the .delegate() method. The syntax of how you write the function differs slightly; if you’ve never used it before, it’s worth checking the API docs for that page to see how it works.) DOM manipulation jQuery makes it very easy to manipulate the DOM. It’s trivial to create new nodes, insert them, remove other ones, move things around, and so on. While the code to do this is simple to write, every time the DOM is manipulated, the browser has to repaint and reflow content which can be extremely costly. This is no more evident than in a long loop, whether it be a standard for() loop, while() loop, or jQuery $.each() loop. In this case, let’s say we’ve just received an array full of image URLs from a database or Ajax call or wherever, and we want to put all of those images in an unordered list. Commonly, you’ll see code like this to pull this off: var arr = [reallyLongArrayOfImageURLs]; $.each(arr, function(count, item) { var newImg = '<li><img src="'+item+'"></li>'; $('#imgList').append(newImg); }); There are a couple of problems with this. For one (which you should have already noticed if you’ve read the earlier part of this article), we’re making the $("#imgList") selection once for each iteration of our loop. The other problem here is that each time the loop iterates, it’s adding a new <li> to the DOM. Each of those insertions is going to be costly, and if our array is quite large then this could lead to a massive slowdown or even the dreaded ‘A script is causing this page to run slowly’ warning. var arr = [reallyLongArrayOfImageURLs], tmp = ''; $.each(arr, function(count, item) { tmp += '<li><img src="'+item+'"></li>'; }); $('#imgList').append(tmp); All we’ve done here is create a tmp variable that each <li> is added to as it’s created. Once our loop has finished iterating, that tmp variable will contain all of our list items in memory, and can be appended to our <ul> all in one go. Browsers work much faster when working with objects in memory rather than on screen, so this is a much faster, more CPU-cycle-friendly method of building a list. Wrapping up These are far from being the only ways to make your jQuery code run better, but they are among the simplest ones to implement. Though each individual change may only make a few milliseconds of difference, it doesn’t take long for those milliseconds to add up. Studies have shown that the human eye can discern delays of as few as 100ms, so simply making a few changes sprinkled throughout your code can very easily have a noticeable effect on how well your website or app performs. Do you have other jQuery optimization tips to share? Leave them in the comments and help make us all better. Now go forth and make awesome! 2011 Scott Kosman scottkosman 2011-12-13T00:00:00+00:00 https://24ways.org/2011/your-jquery-now-with-less-suck/ code
288 Displaying Icons with Fonts and Data- Attributes Traditionally, bitmap formats such as PNG have been the standard way of delivering iconography on websites. They’re quick and easy, and it also ensures they’re as pixel crisp as possible. Bitmaps have two drawbacks, however: multiple HTTP requests, affecting the page’s loading performance; and a lack of scalability, noticeable when the page is zoomed or viewed on a screen with a high pixel density, such as the iPhone 4 and 4S. The requests problem is normally solved by using CSS sprites, combining the icon set into one (physically) large image file and showing the relevant portion via background-position. While this works well, it can get a bit fiddly to specify all the positions. In particular, scalability is still an issue. A vector-based format such as SVG sounds ideal to solve this, but browser support is still patchy. The rise and adoption of web fonts have given us another alternative. By their very nature, they’re not only scalable, but resolution-independent too. No need to specify higher resolution graphics for high resolution screens! That’s not all though: Browser support: Unlike a lot of new shiny techniques, they have been supported by Internet Explorer since version 4, and, of course, by all modern browsers. We do need several different formats, however! Design on the fly: The font contains the basic graphic, which can then be coloured easily with CSS – changing colours for themes or :hover and :focus styles is done with one line of CSS, rather than requiring a new graphic. You can also use CSS3 properties such as text-shadow to add further effects. Using -webkit-background-clip: text;, it’s possible to use gradient and inset shadow effects, although this creates a bitmap mask which spoils the scalability. Small file size: specially designed icon fonts, such as Drew Wilson’s Pictos font, can be as little as 12Kb for the .woff font. This is because they contain fewer characters than a fully fledged font. You can see Pictos being used in the wild on sites like Garrett Murray’s Maniacal Rage. As with all formats though, it’s not without its disadvantages: Icons can only be rendered in monochrome or with a gradient fill in browsers that are capable of rendering CSS3 gradients. Specific parts of the icon can’t be a different colour. It’s only appropriate when there is an accompanying text to provide meaning. This can be alleviated by wrapping the text label in a tag (I like to use <b> rather than <span>, due to the fact that it’s smaller and isn’ t being used elsewhere) and then hiding it from view with text-indent:-999em. Creating an icon font can be a complex and time-consuming process. While font editors can carry out hinting automatically, the best results are achieved manually. Unless you’re adept at creating your own fonts, you’re restricted to what is available in the font. However, fonts like Pictos will cover the most common needs, and icons are most effective when they’re using familiar conventions. The main complaint about using fonts for icons is that it can mean adding a meaningless character to our markup. The good news is that we can overcome this by using one of two methods – CSS generated content or the data-icon attribute – in combination with the :before and :after pseudo-selectors, to keep our markup minimal and meaningful. Our simple markup looks like this: <a href="/basket" class="icon basket">View Basket</a> Note the multiple class attributes. Next, we’ll import the Pictos font using the @font-face web fonts property in CSS: @font-face { font-family: 'Pictos'; src: url('pictos-web.eot'); src: local('☺'), url('pictos-web.woff') format('woff'), url('pictos-web.ttf') format('truetype'), url('pictos-web.svg#webfontIyfZbseF') format('svg'); } This rather complicated looking set of rules is (at the time of writing) the most bulletproof way of ensuring as many browsers as possible load the font we want. We’ll now use the content property applied to the :before pseudo-class selector to generate our icon. Once again, we’ll use those multiple class attribute values to set common icon styles, then specific styles for .basket. This helps us avoid repeating styles: .icon { font-family: 'Pictos'; font-size: 22px: } .basket:before { content: "$"; } What does the :before pseudo-class do? It generates the dollar character in a browser, even when it’s not present in the markup. Using the generated content approach means our markup stays simple, but we’ll need a new line of CSS, defining what letter to apply to each class attribute for every icon we add. data-icon is a new alternative approach that uses the HTML5 data- attribute in combination with CSS attribute selectors. This new attribute lets us add our own metadata to elements, as long as its prefixed by data- and doesn’t contain any uppercase letters. In this case, we want to use it to provide the letter value for the icon. Look closely at this markup and you’ll see the data-icon attribute. <a href="/basket" class="icon" data-icon="$">View Basket</a> We could add others, in fact as many as we like. <a href="/" class="icon" data-icon="k">Favourites</a> <a href="/" class="icon" data-icon="t">History</a> <a href="/" class="icon" data-icon="@">Location</a> Then, we need just one CSS attribute selector to style all our icons in one go: .icon:before { content: attr(data-icon); /* Insert your fancy colours here */ } By placing our custom attribute data-icon in the selector in this way, we can enable CSS to read the value of that attribute and display it before the element (in this case, the anchor tag). It saves writing a lot of CSS rules. I can imagine that some may not like the extra attribute, but it does keep it out of the actual content – generated or not. This could be used for all manner of tasks, including a media player and large simple illustrations. See the demo for live examples. Go ahead and zoom the page, and the icons will be crisp, with the exception of the examples that use -webkit-background-clip: text as mentioned earlier. Finally, it’s worth pointing out that with both generated content and the data-icon method, the letter will be announced to people using screen readers. For example, with the shopping basket icon above, the reader will say “dollar sign view basket”. As accessibility issues go, it’s not exactly the worst, but could be confusing. You would need to decide whether this method is appropriate for the audience. Despite the disadvantages, icon fonts have huge potential. 2011 Jon Hicks jonhicks 2011-12-12T00:00:00+00:00 https://24ways.org/2011/displaying-icons-with-fonts-and-data-attributes/ code
289 Front-End Developers Are Information Architects Too The theme of this year’s World IA Day was “Information Everywhere, Architects Everywhere”. This article isn’t about what you may consider an information architect to be: someone in the user-experience field, who maybe studied library science, and who talks about taxonomies. This is about a realisation I had a couple of years ago when I started to run an increasing amount of usability-testing sessions with people who have disabilities: that the structure, labelling, and connections that can be made in front-end code is information architecture. People’s ability to be successful online is unequivocally connected to the quality of the code that is written. Places made of information In information architecture we talk about creating places made of information. These places are made of ones and zeros, but we talk about them as physical structures. We talk about going onto a social media platform, posting in blogs, getting locked out of an environment, and building applications. In 2002, Andrew Hinton stated: People live and work in these structures, just as they live and work in their homes, offices, factories and malls. These places are not virtual: they are as real as our own minds. 25 Theses We’re creating structures which people rely on for significant parts of their lives, so it’s critical that we carry out our work responsibly. This means we must use our construction materials correctly. Luckily, our most important material, HTML, has a well-documented specification which tells us how to build robust and accessible places. What is most important, I believe, is to understand the semantics of HTML. Semantics The word “semantic” has its origin in Greek words meaning “significant”, “signify”, and “sign”. In the physical world, a structure can have semantic qualities that tell us something about it. For example, the stunning Westminster Abbey inspires awe and signifies much about the intent and purpose of the structure. The building’s size; the quality of the stone work; the massive, detailed stained glass: these are all signs that this is a building meant for something the creators deemed important. Alternatively consider a set of large, clean, well-positioned, well-lit doors on the ground floor of an office block: they don’t need an “entrance” sign to communicate their use and to stop people trying to use a nearby fire exit to get into the building. The design of the doors signify their usage. Sometimes a more literal and less awe-inspiring approach to communicating a building’s purpose happens, but the affect is similar: the building is signifying something about its purpose. HTML has over 115 elements, many of which have semantics to signify structure and affordance to people, browsers, and assistive technology. The HTML 5.1 specification mentions semantics, stating: Elements, attributes, and attribute values in HTML are defined … to have certain meanings (semantics). For example, the <ol> element represents an ordered list, and the lang attribute represents the language of the content. HTML 5.1 Semantics, structure, and APIs of HTML documents HTML’s baked-in semantics means that developers can architect their code to signify structure, create relationships between elements, and label content so people can understand what they’re interacting with. Structuring and labelling information to make it available, usable, and understandable to people is what an information architect does. It’s also what a front-end developer does, whether they realise it or not. A brief introduction to information architecture We’re going to start by looking at what an information architect is. There are many definitions, and I’m going to quote Richard Saul Wurman, who is widely regarded as the father of information architecture. In 1976 he said an information architect is: the individual who organizes the patterns inherent in data, making the complex clear; a person who creates the structure or map of information which allows others to find their personal paths to knowledge; the emerging 21st century professional occupation addressing the needs of the age focused upon clarity, human understanding, and the science of the organization of information. Of Patterns And Structures To me, this clearly defines any developer who creates code that a browser, or other user agent (for example, a screen reader), uses to create a structured, navigable place for people. Just as there are many definitions of what an information architect is, there are for information architecture itself. I’m going to use the definition from the fourth edition of Information Architecture For The World Wide Web, in which the authors define it as: The structural design of shared information environments. The synthesis of organization, labeling, search, and navigation systems within digital, physical, and cross-channel ecosystems. The art and science of shaping information products and experiences to support usability, findability, and understanding. Information Architecture For The World Wide Web, 4th Edition To me, this describes front-end development. Done properly, there is an art to creating robust, accessible, usable, and findable spaces that delight all our users. For example, at 2015’s State Of The Browser conference, Edd Sowden talked about the accessibility of <table>s. He discovered that by simply not using the semantically-correct <th> element to mark up <table> headings, in some situations browsers will decide that a <table> is being used for layout and essentially make it invisible to assistive technology. Another example of how coding practices can affect the usability and findability of content is shown by Léonie Watson in her How ARIA landmark roles help screen reader users video. By using ARIA landmark roles, people who use screen readers are quickly able to identify and jump to common parts of a web page. Our definitions of information architects and information architecture mention patterns, rules, organisation, labelling, structure, and relationships. There are numerous different models for how these elements get boiled down to their fundamentals. In his Understanding Context book, Andrew Hinton calls them Labels, Relationships, and Rules; Jorge Arango calls them Links, Nodes, And Order; and Dan Klyn uses Ontology, Taxonomy, and Choreography, which is the one we’re going to use. Dan defines these terms as: Ontology The definition and articulation of the rules and patterns that govern the meaning of what we intend to communicate. What we mean when we say what we say. Taxonomy The arrangements of the parts. Developing systems and structures for what everything’s called, where everything’s sorted, and the relationships between labels and categories Choreography Rules for interaction among the parts. The structures it creates foster specific types of movement and interaction; anticipating the way users and information want to flow and making affordance for change over time. We now have definitions of an information architect, information architecture, and a model of the elements of information architecture. But is writing HTML really creating information or is it just wrangling data and metadata? When does data turn into information? In his book Managing For The Future Peter Drucker states: … data is not information. Information is data endowed with relevance and purpose. Managing For The Future If we use the correct semantic element to mark up content then we’re developing with purpose and creating relevance. For example, if we follow the advice of the HTML 5.1 specification and mark up headings using heading rank instead of the outline algorithm, we’re creating a structure where the depth of one heading is relevant to the previous one. Architected correctly, an <h2> element should be relevant to its parent, which should be the <h1>. By following the HTML specification we can create a structured, searchable, labeled document that will hopefully be relevant to what our users need to be successful. If you’ve never used a screen reader, you might be wondering how the headings on a page are searchable. Screen readers give users the ability to interact with headings in a couple of ways: by creating a list of headings so users can quickly scan the page for information by using a keyboard command to cycle through one heading at a time If we had a document for Christmas Day TV we might structure it something like this: <h1>Christmas Day TV schedule</h1> <h2>BBC1</h2> <h3>Morning</h3> <h3>Evening</h3> <h2>BBC2</h2> <h3>Morning</h3> <h3>Evening</h3> <h2>ITV</h2> <h3>Morning</h3> <h3>Evening</h3> <h2>Channel 4</h2> <h3>Morning</h3> <h3>Evening</h3> If I use VoiceOver to generate a list of headings, I get this: Once I have that list I can use keyboard commands to filter the list based on the heading level. For example, I can press 2 to hear just the <h2>s: If we hadn’t used headings, of if we’d nested them incorrectly, our users would be frustrated. Putting this together Let’s put this together with an example of a button that, when pressed, toggles the appearance of a panel of links. There are numerous ways we could create a button on a web page, but the best way is to just use a <button>. Every browser understands what a <button> is, how it works, and what keyboard shortcuts should be used with them. The HTML specification for the <button> element says: The <button> element represents a button labeled by its contents. The contents that a <button> can have include the type attribute, any relevant ARIA attributes, and the actual text label that the user sees. This information is more important than the visual design: it doesn’t matter how beautiful or obtuse the design is, if the underlying code is non-semantic and poorly labelled, people are going to struggle to use it. Here are three buttons, each created with the same HTML but with different designs: Regardless of what they look like, because we’ve used semantic HTML instead of a bunch of meaningless <div>s or <span>s, people who use assistive technology are going to benefit. Out of the box, without any extra development effort, a <button> is accessible and usable with a keyboard. We don’t have to write event handlers to listen for people pressing the Enter key or the space bar, which we would have to do if we’d faked a button with non-semantic elements. Our <button> can also be quickly findable: for example, in the same way it’s possible to create a list of headings with a screen reader, I can also create a list of form elements and then quickly jump to the one I want. Now we have our <button>, let’s add the panel we’re toggling the appearance of. Here’s our code: <button aria-controls="panel" aria-expanded="false" class="settings" id="settings" type="button">Settings</button> <div class="panel hidden" id="panel"> <ul aria-labelledby="settings"> <li><a href="…">Account</a></li> <li><a href="…">Privacy</a></li> <li><a href="…">Security</a></li> </ul> </div> There’s quite a bit going on here. We’re using the: aria-controls attribute to architect a connection between the <button> element and the panel whose appearance it controls. When some assistive technology, for example the JAWS screen reader, encounters an element with aria-controls it audibly tells a user about the controlled expanded element and gives them the ability to move focus to it. aria-expanded attribute to denote whether the panel is visible or not. We toggle this value using JavaScript to true when the panel is visible and false when it’s not. This important attribute tells people who use screen readers about the state of the elements they’re interacting with. For example, VoiceOver announces Settings expanded button when the panel is visible and Settings collapsed button when it’s hidden. aria-labelledby attribute to give the list a title of “Settings”. This can benefit some users of assistive technology. For example, screen readers can cycle through all the lists on a page, so being able to title them can improve findability. Being able to hear list Settings three items is, I’d argue, more useful than list three items. By doing this we’re supporting usability and findability. <ul> element to contain our list of links in our panel. Let’s look at the choice of <ul> to contain our settings choices. Firstly, our settings are related items, so they belong in a structure that semantically groups things. This is something that a list can do that other elements or patterns can’t. This pattern, for example, isn’t semantic and has no structure: <div><a href="…">Account</a></div> <div><a href="…">Privacy</a></div> <div><a href="…">Security</a></div> All we have there is three elements next to each other on the screen and in the DOM. That is not robust code that signifies anything. Why are we using an unordered list as opposed to an ordered list or a definition list? A quick look at the HTML specification tells us why: The <ul> element represents a list of items, where the order of the items is not important — that is, where changing the order would not materially change the meaning of the document. The HTML 5.1 specification’s description of the element Will the meaning of our document materially change if we moved the order of our links around? Nope. Therefore, I’d argue, we’ve used the correct element to structure our content. These coding decisions are information architecture I believe that what we’ve done here is pure information architecture. Going back to Dan Klyn’s model, we’ve practiced ontology by looking at the meaning of what we’re intending to communicate: we want to communicate there is an interactive element that toggles the appearance of an element on a page so we’ve used one, a <button>, with those semantics. programmatically we’ve used the type='button' attribute to signify that the button isn’t a menu, reset, or submit element. visually we’ve designed our <button> look like something that can be interacted with and, importantly, we haven’t removed the focus ring. we’ve labelled the <button> with the word “Settings” so that our users will hopefully understand what the button is for. we’ve used an <ul> element to structure and communicate our list of related items. We’ve also practiced taxonomy by developing systems and structures and creating relationships between our elements: by connecting the <button> to the panel using the aria-controls attribute we’ve programmatically created a relationship between two elements. we’ve developed a structure in our elements by labelling our <ul> with the same name as the <button> that controls its appearance. And finally we’ve practiced choreography by creating elements that foster movement and interaction. We’ve anticipated the way users and information want to flow: we’ve used a <button> element that is interactive and accessible out of the box. our aria-controls attribute can help some people who use screen readers move easily from the <button> to the panel it controls. by toggling the value of the aria-expanded attribute we’ve developed a system that tells assistive technology about the status of the relationship between our elements: the panel is visible or the panel is hidden. we’ve made sure our information is more usable and findable no matter how our users want or need to interact with it. Regardless of how someone “sees” our work they’re going to be able to use it because we’ve architected multiple ways to access our information. Information architecture, robust code, and accessibility The United Nations estimates that around 10% of the world’s population has some form of disability which, at the time of writing, is around 740,000,000 people. That’s a lot of people who rely on well-architected semantic code that can be interpreted by whatever assistive technology they may need to use. If everyone involved in the creation of our places made of information practiced information architecture it would make satisfying the WCAG 2.0 POUR principles so much easier. Our digital construction practices directly affect the quality of life of millions of people, and we have a responsibility to make technology available to them. In her book How To Make Sense Of Any Mess, Abby Covert states: If we’re going to be successful in this new world, we need to see information as a workable material and learn to architect it in a way that gets us to our goals. How To Make Sense Of Any Mess I believe that the world will be a better place if we start treating front-end development as information architecture. 2016 Francis Storr francisstorr 2016-12-17T00:00:00+00:00 https://24ways.org/2016/front-end-developers-are-information-architects-too/ code
292 Watch Your Language! I’m bilingual. My first language is French. I learned English in my early 20s. Learning a new language later in life meant that I was able to observe my thought processes changing over time. It made me realize that some concepts can’t be expressed in some languages, while other languages express these concepts with ease. It also helped me understand the way we label languages. English: business. French: romance. Here’s an example of how words, or the absence thereof, can affect the way we think: In French we love everything. There’s no straightforward way to say we like something, so we just end up loving everything. I love my sisters, I love broccoli, I love programming, I love my partner, I love doing laundry (this is a lie), I love my mom (this is not a lie). I love, I love, I love. It’s no wonder French is considered romantic. When I first learned English I used the word love rather than like because I hadn’t grasped the difference. Needless to say, I’ve scared away plenty of first dates! Learning another language made me realize the limitations of my native language and revealed concepts I didn’t know existed. Without the nuances a given language provides, we fail to express what we really think. The absence of words in our vocabulary gets in the way of effectively communicating and considering ideas. When I lived in Montréal, most people in my circle spoke both French and English. I could switch between them when I could more easily express an idea in one language or the other. I liked (or should I say loved?) those conversations. They were meaningful. They were efficient. I’m quadrilingual. I code in Ruby, HTML/CSS, JavaScript, Python. In the past couple of years I have been lucky enough to write code in these languages at a massive scale. In learning Ruby, much like learning English, I discovered the strengths and limitations of not only the languages I knew but the language I was learning. It taught me to choose the right tool for the job. When I started working at Shopify, making a change to a view involved copy/pasting HTML and ERB from one view to another. The CSS was roughly structured into modules, but those modules were not responsive to different screen sizes. Our HTML was complete mayhem, and we didn’t consider accessibility. All this made editing views a laborious process. Grep. Replace all. Test. Ship it. Repeat. This wasn’t sustainable at Shopify’s scale, so the newly-formed front end team was given two missions: Make the app responsive (AKA Let’s Make This Thing Responsive ASAP) Make the view layer scalable and maintainable (AKA Let’s Build a Pattern Library… in Ruby) Let’s make this thing responsive ASAP The year was 2015. The Shopify admin wasn’t mobile friendly. Our browser support was set to IE10. We had the wind in our sails. We wanted to achieve complete responsiveness in the shortest amount of time. Our answer: container queries. It seemed like the obvious decision at the time. We would be able to set rules for each component in isolation and the component would know how to lay itself out on the page regardless of where it was rendered. It would save us a ton of development time since we wouldn’t need to change our markup, it would scale well, and we would achieve complete component autonomy by not having to worry about page layout. By siloing our components, we were going to unlock the ultimate goal of componentization, cutting the tie to external dependencies. We were cool. Writing the JavaScript handling container queries was my first contribution to Shopify. It was a satisfying project to work on. We could drop our components in anywhere and they would magically look good. It took us less than a couple weeks to push this to production and make our app mostly responsive. But with time, it became increasingly obvious that this was not as performant as we had hoped. It wasn’t performant at all. Components would jarringly jump around the page before settling in on first paint. It was only when we started using the flex-wrap: wrap CSS property to build new components that we realized we were not using the right language for the job. So we swapped out JavaScript container queries for CSS flex-wrapping. Even though flex wasn’t yet as powerful as we wanted it to be, it was still a good compromise. Our components stayed independent of the window size but took much less time to render. Best of all: they used CSS instead of relying on JavaScript for layout. In other words: we were using the wrong language to express our layout to the browser, when another language could do it much more simply and elegantly. Let’s build a pattern library… in Ruby In order to make our view layer maintainable, we chose to build a comprehensive library of helpers. This library would generate our markup from a single source of truth, allowing us to make changes system-wide, in one place. No. More. Grepping. When I joined Shopify it was a Rails shop freshly wounded by a JavaScript framework (See: Batman.js). JavaScript was like Voldemort, the language that could not be named. Because of this baggage, the only way for us to build a pattern library that would get buyin from our developers was to use Rails view helpers. And for many reasons using Ruby was the right choice for us. The time spent ramping developers up on the new UI Components would be negligible since the Ruby API felt familiar. The transition would be simple since we didn’t have to introduce any new technology to the stack. The components would be fast since they would be rendered on the server. We had a plan. We put in place a set of Rails tools to make it easy to build components, then wrote a bunch of sweet, sweet components using our shiny new tools. To document our design, content and front end patterns we put together an interactive styleguide to demonstrate how every component works. Our research and development department loved it (and still do)! We continue to roll out new components, and generally the project has been successful, though it has had its drawbacks. Since the Shopify admin is mostly made up of a huge number of forms, most of the content is static. For this reason, using server-rendered components didn’t seem like a problem at the time. With new app features increasing the amount of DOM manipulation needed on the client side, our early design decisions mean making requests to the server for each re-paint. This isn’t going to cut it. I don’t know the end of this story, because we haven’t written it yet. We’ve been exploring alternatives to our current system to facilitate the rendering of our components on the client, including React, Vue.js, and Web Components, but we haven’t determined the winner yet. Only time (and data gathering) will tell. Ruby is great but it doesn’t speak the browser’s language efficiently. It was not the right language for the job. Learning a new spoken language has had an impact on how I write code. It has taught me that you don’t know what you don’t know until you have the language to express it. Understanding the strengths and limitations of any programming language is fundamental to making good design decisions. At the end of the day, you make the best choices with the information you have. But if you still feel like you’re unable to express your thoughts to the fullest with what you know, it might be time to learn a new language. 2016 Annie-Claude Côté annieclaudecote 2016-12-10T00:00:00+00:00 https://24ways.org/2016/watch-your-language/ code
295 Internet of Stranger Things This year I’ve been running a workshop about using JavaScript and Node.js to work with all different kinds of electronics on the Raspberry Pi. So especially for 24 ways I’m going to show you how I made a very special Raspberry Pi based internet connected project! And nothing says Christmas quite like a set of fairy lights connected to another dimension1. What you’ll see You can rig up the fairy lights in your home, with the scrawly letters written under each one. The people from the other side (i.e. the internet) will be able to write messages to you from their browser in real time. In fact why not try it now; check this web page. When you click the lights in your browser, my lights (and yours) will turn on and off in real life! (There may be a queue if there are lots of people accessing it, hit the “Send a message” button and wait your turn.) It’s all done with JavaScript, using Node.js running on both the Raspberry Pi and on the server. I’m using WebSockets to communicate in real time between the browser, server and Raspberry Pi. What you’ll need Raspberry Pi any of the following models: Zero (will need straight male header pins soldered2 and Micro USB OTG adaptor), A+, B+, 2, or 3 Micro SD card at least 4Gb Class 10 speed3 Micro USB power supply at least 2A USB Wifi dongle (unless you have a Pi 3 - that has wifi built in). Addressable fairy lights Logic level shifter (with pins soldered unless you want to do it!) Breadboard Jumper wires (3x male to male and 4x female to male) Optional but recommended Base board to hold the Pi and Breadboard (often comes with a breadboard!) Find links for where to buy all of these items that goes along with this tutorial. The total price should be around $1004. Setting up the Raspberry Pi You’ll need to install the SD card for the Raspberry Pi. You’ll find a link to download a disk image on the support document, ready-made with the Raspbian version of Linux, along with Node.js and all the files you need. Download it and write it to the SD card using the fantastic free software Etcher5. Next up you have to configure the wifi details on the SD card. If you plug the card into your computer you should see a drive called BOOT. There’s a text file on there called wpa_supplicant.conf. Open it up in your favourite text editor and replace mywifi and mypassword with your wifi details6. network={ ssid="mywifi" psk="mypassword" } Save the file, eject the card from your computer and plug it into the Raspberry Pi. If you have a base board or holder for the Raspberry Pi, attach it now. Then connect the wifi USB dongle7 and power supply, but don’t plug it in yet! Wiring! Time to wire everything up! First of all, push the Logic Level Converter into the middle of the breadboard: Logic Level Converter The logic level converter may be labelled differently from the one in the diagram but the pins are usually exactly the same internally. I would just make sure the pins marked HV (High Voltage) are on the bottom and LV (Low Voltage) are on the top. Raspberry Pi pins only output 3.3v but the lights need 5v. That’s why we need the logic level converter in there to boost up the signal. Connect the first two wires between the Raspberry Pi pins and the breadboard: Note that the pins on the Raspberry Pi are male, so you need a female to male jumper wire to connect between them and the breadboard. The colours don’t have to match but it’s easier to follow (and check) if you use the same ones as in the diagram. Then the next two: This is what you should have so far: Lights Now to connect the lights! My ones have a connector with three holes in it that I can push jumper wires into, and hopefully yours will too! So I used the male-to-male jumper wires to connect them to the breadboard. Make sure that you connect the right end of the lights, mine has a male connector at the wrong end so it’s impossible to do this, but double check. Also make sure that the holes in the light connector are the same as mine. To do this, follow the wires from the connector to the first light and look at the circuit board inside. You should just about be able to make out the connections labelled + (sometimes 5V, V+ or VCC), GND (or ‘-’ or G) and DI (sometimes DIN for data in). You can just about make out the +, DI and GND on this picture. Note that on the other side of the board there is a DO for data out - that’s what takes the data along to the chip in the next light. Make sure that you’re plugging into the data-in and not the data-out! That’s it! Everything’s plugged in and ready to go! But before you plug power into your Pi, double check all your wires and make sure they’re exactly right! You could damage your Raspberry Pi if it is not wired correctly. So triple check! The Moment of Truth! Plug in the Raspberry Pi and wait around a minute or two for it to boot up. If all is well, the lights should strobe rainbow colours for one second - that’s your confirmation that it’s connected to my WebSocket server and ready to receive messages from the upside-down! However, if the first light in the string is pulsing red, it means that you’re not connected to the internet. So check the Troubleshooting section of the support document. If it’s pulsing green then you’re connected to the internet but can’t connect to my server. It must have gone down. Sorry! The code will keep trying so leave it running and maybe it’ll come back up. Rig up the lights! Fix the lights up on the wall however you want, pins, nails, tape. I’ve used cable clips. Just be careful! I’m using a 50 light string so I’ve programmed it to use the lights at the end for the letters. That way I have just under half the string to extend down to the floor where I can keep the Raspberry Pi. Check the photo here to see how the lights line up, note that there are spare unused lights in-between each row: Now visit lights.seb.ly and you’ll see this : If you’re the only one online you’ll have direct connection to the lights and any letter you click on will light up both in the browser and in real life. If there are other people there, you’ll need to click the button to join the queue and wait your turn. How it works - the geeky details! Electronics: The pins on the Raspberry Pi are known as GPIO pins, general-purpose input/output. You can connect a wide variety of electronic components to them, LED lights, buttons, switches, and sensors. You can turn the power to the pins on and off using Node.js (or Python, if you prefer). Addressable LEDs or “Neopixels” We’re only using one GPIO pin on the Raspberry Pi (the other connections are 5V, 3.3V and ground) and that single pin is controlling all of the lights in the string. The code turns the pin on and off really fast in strictly timed morse-code-like dots and dashes to transmit binary data. The chips attached to each LED decode the binary and adjust the output to the LED accordingly. That chip then sends the data on to the next light in the string. The chips on each light are the WS2811, part of the WS281x family that come in a multitude of different form factors and are often packaged with tiny LEDs in a single component. They are commonly referred to as Neopixels8 and I used them on my Laser Light Synths project. Neopixels with the chip and the LED all in one - it’s the white square shaped component and the darker square inside is the chip. These are only 5mm wide! A Laser Light Synth! Covered with around 800 super bright neopixels! Logic Level Converter The logic level converter is a really cheap and easy way to change the level from 3.3v to 5v and back again. You must be careful that you do not connect 5v into a GPIO pin or you will most likely damage the Raspberry Pi processor chip. Power Neopixels can often draw a lot of current so you need to be careful how you power them. I’ve measured the current draw from the string to be less than 800mA so you should be fine wired directly to the 5V output. But if you use more lights or have them all on really bright at once, you’ll need to use a separate 5V power supply. If you want to learn more, check out Adafruit’s Neopixel Uberguide. Node.js There are two Node.js apps running here, one on the Raspberry Pi and one on my server. You can see the code on my GitHub at github.com/sebleedelisle/stranger-lights for the Raspberry Pi and github.com/sebleedelisle/stranger-lights-server for the server. And they’re hosted on npm as stranger-lights and stranger-lights-server. The server side code sets up a standard web server to deliver the HTML for the web interface. It also sets up a WebSocket server that allows for real-time communication between the browser and the server. This server code also manages the queue and who is in control of the lights at any given time. WebSockets I’m using the excellent Socket.io library to manage the WebSocket connection. Both the browser and the Raspberry Pi Node.js app connects to my WebSocket server. When you click on a letter in the browser, a message is sent to the server, which forwards it to the connected Raspberry Pi clients and also all the web browsers9. The Raspberry Pi code The Node.js app runs automatically on startup, and I made this happen by adding this to the /etc/rc.local file: node /home/pi/strangerthings/client.js > /dev/null & Anything in the rc.local file gets executed when the Pi boots up and this line of code runs the Node.js app and routes its output to nowhere (ie /dev/null). The & means that it runs it in the background and doesn’t hold up the boot process. Working with the Raspberry Pi headless You might know that when a computer has no screen or keyboard, you would refer to it as “running headless”. So just like most web servers, you need to configure it over the network with ssh10. If you’re on a mac you can find your Pi on the network through the name raspberrypi.local11, otherwise you’ll need to find its IP address. There’s more on the guide to Remote Access instructions on the Raspberry Pi website. And if you’re very new to the terminal, I highly recommend this great online Linux command line tutorial. Improvements This is quite an early experiment and I’m sure I’ll discover lots of optimisations over the next few weeks, especially if the server gets a proper hammering today! But there are a few things you can do. Obviously I’ve just rigged up my lights with Post-it notes. It’d be a lot nicer to get a paint brush and try to recreate the Winona-in-a-manic-state text style. Where next? Finding quality resources about Node.js for electronics on the Pi can be somewhat hit and miss, but this is getting better all the time. Alternatively I am thinking about running some online courses, please let me know if that’s something you’d be interested in, or sign up to my mailing list at st4i.com. There are many many more resources for the Raspberry Pi with Python (gpiozero is a good place to start), so if that language works for you, you’ll be spoilt for choice! Also take a look at Arduino - it’s an incredibly popular platform for electronics and the internet is literally bursting with resources. I hope you enjoyed this little foray into the world of JavaScript electronics on the Raspberry Pi! If you get this working at home please let me know! Tweet me at @seb_ly. Not a particularly original idea, but I don’t think I’ve seen anyone do it quite like this before, ie using WebSockets, and Node.js on a Raspberry Pi. Other examples: Internet of Stranger Things, Strangerlights.com, and loads of examples on Instructables ↩︎ Video guide to soldering pins on to a Pi Zero and further soldering advice from Adafruit ↩︎ Slower cards will work but performance may suffer ↩︎ Or £5,000 in UK money. Sorry, Brexit joke :) ↩︎ You will need a card reader on your computer - most micro SD cards come with an adaptor that fits standard SD slots.  ↩︎ SSID and password should be all that you need but you can see all the config options on this wpa supplicant guide ↩︎ Raspberry Pi Zero will require the OTG to USB adaptor to attach the wifi dongle ↩︎ Thanks to Adafruit who invented the term neopixels so we don’t have to refer to them as WS281x any more! ↩︎ So you can see other people sending messages in the browser ↩︎ ssh is short for Secure Shell and is a way to connect to a remote computer and type in it just like you would in the terminal. ↩︎ You can change this default hostname using raspi-config ↩︎ 2016 Seb Lee-Delisle sebleedelisle 2016-12-01T00:00:00+00:00 https://24ways.org/2016/internet-of-stranger-things/ code
298 First Steps in VR The web is all around us. As web folk, it is our responsibility to consider the impact our work can have. Part of this includes thinking about the future; the web changes lives and if we are building the web then we are the ones making decisions that affect people in every corner of the world. I find myself often torn between wanting to make the right decisions, and just wanting to have fun. To fiddle and play. We all know how important it is to sometimes just try ideas, whether they will amount to much or not. I think of these two mindsets as production and prototyping, though of course there are lots of overlap and phases in between. I mention this because virtual reality is currently seen as a toy for rich people, and in some ways at the moment it is. But with WebVR we are able to create interesting experiences with a relatively low entry point. I want us to have open minds, play around with things, and then see how we can use the tools we have at our disposal to make things that will help people. Every year we see articles saying it will be the “year of virtual reality”, that was especially prevalent this year. 2016 has been a year of progress, VR isn’t quite mainstream but with efforts like Playstation VR and Google Cardboard, we are definitely seeing much more of it. This year also saw the consumer editions of the Oculus Rift and HTC Vive. So it does seem to be a good time for an overview of how to get involved with creating virtual reality on the web. WebVR is an API for connecting to devices and retrieving continuous data such as the position and orientation. Unlike the Web Audio API and some other APIs, WebVR does not feel like a framework. You use it however you want, taking the data and using it as you wish. To make it easier, there are plenty of resources such as Three.js, A-Frame and ReactVR that help to make the heavy lifting a bit easier. Getting Started with A-Frame I like taking the opportunity to learn new things whenever I can. So while planning this article I thought that instead of trying to teach WebGL or even Three.js in a way that is approachable for all, I would create my first project using A-Frame and write about that. This is not a tutorial as such, I just want to show how to go about getting involved with VR. The beauty of A-Frame is that it is very similar to web components, you can just write HTML to build worlds that will automatically work on all the different types of devices. It uses WebGL and WebVR but in such a way that it quite drastically reduces the learning curve. That’s not to say you can’t build complex things, you have complete access to write JavaScript and shaders. I’m lazy. Whenever I learn a new language or framework I have found that the best way, personally, for me to learn is to have a project and to copy the starting code from someone else. A project lets you have a good idea of what you want to produce and it means you can ignore a lot of the irrelevant documentation, focussing purely on what you need. That reduces the stress of figuring things out. Copying code also makes it easier, because you know your boilerplate code is working. There’s nothing worse than getting stuck before anything actually works the first time. So I tinker. I take code and I modify it, I play around. It’s fun. For this project I wanted to keep things as simple as possible, so I can easily explain it without the classic “draw a circle then draw an owl”. I wrote a list of requirements, with some stretch goals that you can give a try yourself if you fancy: Must work on Google Cardboard at a minimum, because of price Therefore, it must not rely on having a controller Auto-moving around a maze would be a good example Move in direction you look Stretch goal: Scoring, time until you hit a wall or get stuck in maze Stretch goal: Levels, so the map doesn’t need to be random Stretch goal: Snow! I decided to base this project on an example, Platforms, by Don McCurdy who wrote the really useful aframe-extras. Platforms has random 3D blocks that you can jump onto, going up into the sky. So I took his code and reduced it so that the blocks are randomly spread on the ground. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width"> <title>24 ways</title> <script src="https://aframe.io/releases/0.3.2/aframe.js"></script> <script src="//cdn.rawgit.com/donmccurdy/aframe-extras/v2.6.1/dist/aframe-extras.min.js"></script> </head> <body> <a-scene> <a-entity id="player" camera universal-controls kinematic-body position="0 1.8 0"> </a-entity> <a-entity id="walls"></a-entity> <a-grid id="ground" static-body></a-grid> <a-sky id="sky" color="#AADDF0"></a-sky> <!-- Lighting --> <a-light type="ambient" color="#ccc"></a-light> </a-scene> <script> document.querySelector('a-scene').addEventListener('render-target-loaded', function () { var MAP_SIZE = 10, PLATFORM_SIZE = 5, NUM_PLATFORMS = 50; var platformsEl = document.querySelector('#walls'); var v, box; for (var i = 0; i < NUM_PLATFORMS; i++) { // y: 0 is ground v = { x: (Math.floor(Math.random() * MAP_SIZE) - PLATFORM_SIZE) * PLATFORM_SIZE, y: PLATFORM_SIZE / 2, z: (Math.floor(Math.random() * MAP_SIZE) - PLATFORM_SIZE) * PLATFORM_SIZE }; box = document.createElement('a-box'); platformsEl.appendChild(box); box.setAttribute('color', '#39BB82'); box.setAttribute('width', PLATFORM_SIZE); box.setAttribute('height', PLATFORM_SIZE); box.setAttribute('depth', PLATFORM_SIZE); box.setAttribute('position', v.x + ' ' + v.y + ' ' + v.z); box.setAttribute('static-body', ''); } console.info('Platforms loaded.'); }); </script> </body> </html> As you can see, this is very readable. Especially if you ignore the JavaScript that is used to create the maze. A-Frame (with A-Frame Extras) gives you a lot of power with relatively little to learn. We start with an <a-scene> which is the container for everything that is going to show up on the screen. There are a few <a-entity> which can be compared to <div> as they are essentially non-semantic containers, able to be used for any purpose. The attributes are used to define functionality, for example the camera attribute sets the entity to function as a camera and kinematic-body makes it collide instead of go through objects. Attributes are also used to set position and sizes, often using JavaScript to dynamically define them. Styling Now we’ve got the HTML written, we need to style it. To do this we add A-Frame compatible attributes such as color and material. I recommend playing around, you can get some quite impressive effects fairly easily. Originally I wanted a light snowy maze but it ended up being dark and foggy, as I really liked the feeling it gave. Note, you will probably need a server running for images to work. You can do this by running python -m "SimpleHTTPServer" in the folder where the code is, then go to localhost:8000 in browser. Textures Unless you are going for a cartoony style, you probably want to find some textures. I found some on textures.com, one image worked well for the walls and the other for the floor. <a-assets> <img id="texture-floor" src="floor.jpg"> <img id="texture-wall" src="wall.jpg"> </a-assets> The <a-assets> is used to define (as well as preload and cache) all assets, including images, audio and video. As you can see, images in the Asset Management System just use normal img tags. The ids are important here as we can use them later for using the textures. To apply a texture to an object, you create a material. For a simple material where it just shows the image, you set the src to the id selector of the image. Replace: <a-grid id="ground" static-body></a-grid> With: <a-grid id="ground" static-body material="src: #texture-floor"></a-grid> This will automatically make the image repeat over the entire floor, in my case filling it with bricks. The walls are pretty much identical, with the slight exception that it is set in JavaScript as they are dynamically defined. box.setAttribute('material', 'src: #texture-wall'); That’s it for the textures, for now at least. These will not look completely realistic, as the light will bump off the rectangular wall rather than texture itself. This can be improved by using maps, textures that are used to modify the shape and physical properties of the object. Lighting The next part of styling is lighting. By using fog and different types of lighting, we are able to add atmospheric details to the game to make it feel that bit more realistic and polished. There are lots of types of light in A-Frame (most coming from Three.js). You can add a light either by using the <a-light> entity or by attaching a light attribute to any other entity. If there are no lights defined then A-Frame adds some by default so that the scene is always lit. To start with I wanted to light up the scene with a general light, type="ambient", so that the whole game felt slightly dark. I chose to set the light to a reddish colour #92455E. After playing around with intensity I chose 0.4, it added enough light to get the feeling I wanted without it being overly red. I also added a blue skybox (<a-sky>), as it looked a bit odd with a white sky. <a-light type="ambient" color="#92455E" intensity="0.4"></a-light> <a-sky id="sky" color="#0000ff"></a-sky> I felt that the maze looked good with a red tinge but it was a bit flat, everything was the same colour and it was a bit dark. So I added a light within the #player entity, this could have been as an attribute but I set it as a child a-light instead. By using type="point" with a high intensity and low distance, it showed close walls as being lighter. It also added a sort-of object to the player, it isn’t a walking human or anything but by moving light where the player is it feels a bit more physical. <a-light color="#fff" distance="5" intensity="0.7" type="point"></a-light> By this point it was starting to look decent, so I wanted to add the fog to really give some personality and depth to the maze. To do this I added the fog attribute to the <a-scene> with type=exponential so it looks thicker the further away it is and a mid intensity, so you feel a bit lost but can still see. I was very happy with this result. It took a lot of playing around with colours and values, which is fun in itself. I highly recommend you take the code (or write your own) and play around with the numbers. Movement One of the reasons I decided to use aframe-extras is that it has a few different camera controls built in. As you saw earlier, I am using the universal-controls which gives WASD (keyboard) controls by default. I wanted to make it automatically move in the direction that you’re looking, but I wasn’t quite sure how without rewriting the controls. So I asked Don McCurdy for advice and he very nicely gave me a small snippet of code to get it working. AFRAME.registerComponent('automove-controls', { init: function () { this.speed = 0.1; this.isMoving = true; this.velocityDelta = new THREE.Vector3(); }, isVelocityActive: function () { return this.isMoving; }, getVelocityDelta: function () { this.velocityDelta.z = this.isMoving ? -speed : 0; return this.velocityDelta.clone(); } }); Replace: universal-controls With: universal-controls="movementControls: automove, gamepad, keyboard" This works by creating a component automove-controls that adds auto-move to the player without overriding movement completely. It doesn’t even touch direction, it just checks if isMoving is true then moves the player by the set speed. Components can be creating for adding all kinds of functionality with relative ease. It makes it very powerful for people of all difficulty levels. Building a map Currently the maze is created randomly, which is great but means there will often be walls that overlap or the player gets trapped with nowhere to go. So to solve this, I decided to use a map editor (Tiled) so that we can create the mazes ourselves. This is a great start towards one of the stretch goals, levels. I made the maze in Tiled by finding a random tileset online (we don’t need to actually show the images), I used one tile for the wall and another for the player. Then I exported as a JavaScript file and modified it in my text editor to get rid of everything I didn’t need. I made it so 0 is the path, 1 is the wall and 2 is the player. I then added the script to the HTML, as a separate file so it’s easy to update in the future. var map = { "data":[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "height":10, "width":10 } As you can see, this gives a simple 10x10 maze with some dead ends. The player starts in the bottom right corner (my choice, could be anywhere). I rewrote the random platforms code (from Don’s example) to instead loop over the map data and place walls where it is 1 and position the player where data is 2. I set the position so that the origin of the map would be 0,1.5,0. The y axis is in this case the height (ground being 0), but if a wall is positioned at 0 by its centre then some of it is underground. So the y needed to be the height divided by 2. document.querySelector('a-scene').addEventListener('render-target-loaded', function () { var WALL_SIZE = 5, WALL_HEIGHT = 3; var el = document.querySelector('#walls'); var wall; for (var x = 0; x < map.height; x++) { for (var y = 0; y < map.width; y++) { var i = y*map.width + x; var position = (x-map.width/2)*WALL_SIZE + ' ' + 1.5 + ' ' + (y-map.height/2)*WALL_SIZE; if (map.data[i] === 1) { // Create wall wall = document.createElement('a-box'); el.appendChild(wall); wall.setAttribute('color', '#fff'); wall.setAttribute('material', 'src: #texture-wall;'); wall.setAttribute('width', WALL_SIZE); wall.setAttribute('height', WALL_HEIGHT); wall.setAttribute('depth', WALL_SIZE); wall.setAttribute('position', position); wall.setAttribute('static-body', '); } if (map.data[i] === 2) { // Set player position document.querySelector('#player').setAttribute('position', position); } } } console.info('Walls added.'); }); With this added, it makes it nice and easy to change around the map as well as to add new features. Perhaps you want monsters or objects. Just set the number in the map data and add an if statement to the loop. In the future you could add layers, so multiple things can be in the same position. Or perhaps even make the maze go up the y axis too, with ramps or staircases. There’s a lot you can do with relative ease. As you can see, A-Frame really does reduce the learning curve of 3D and VR on the web. It’s Not All Fun And Games A lot of examples of virtual reality are games, including this one. So it is understandable to think that VR is for gaming, but actually that’s just a tiny subset. There are all sorts of applications for VR, including story telling, data visualisation and even meditation. There have been a number of cases where it has been shown virtual reality can help as a tool for therapies: Oxford study finds virtual reality can help treat severe paranoia Virtual Reality Therapy for Phobias at the Duke Faculty Practice Bravemind: Virtual Reality Exposure Therapy at the University of Southern California These are just a few examples of where virtual reality is being used around the world to help people feel better and get through some very tough times. There have also been examples of it being used for simulating war zones or medical situations, both as a teaching and journalism tool. Wrapping Up Ten years ago, on this very site, Cameron Moll wrote an article explaining the mobile web. He explained how mobile phones with data plans were becoming increasingly common, that WAP 2.0 included the XHTML Mobile Profile meaning it would be familiar with web folk. “The mobile web is rapidly becoming an XHTML environment, and thus you and I can apply our existing “desktop web” skills to understand how to develop content for it.” We can look at that and laugh a little, we have come a very long way in the last decade. Even people in developing countries with very little money have mobile phones with access to a web that is far more capable than the “desktop web” Cameron was referring to. So while I am not saying virtual reality is going to change the world or replace our phones, who knows! We can use our skills as web folk to dabble, we don’t need to learn any new languages. If on the 2026 edition of 24 ways, somebody references this article and looks at how far we have come… well, let’s hope we have used our skills well and made the world just that little bit better. And if VR is a fad? Well it’s fun… have a go anyway. 2016 Shane Hudson shanehudson 2016-12-11T00:00:00+00:00 https://24ways.org/2016/first-steps-in-vr/ code
300 Taking Device Orientation for a Spin When The Police sang “Don’t Stand So Close To Me” they weren’t talking about using a smartphone to view a panoramic image on Facebook, but they could have been. For years, technology has driven relentlessly towards devices we can carry around in our pockets, and now that we’re there, we’re expected to take the thing out of our pocket and wave it around in front of our faces like a psychotic donkey in search of its own dangly carrot. But if you can’t beat them, join them. A brave new world A couple of years back all sorts of specs for new HTML5 APIs sprang up much to our collective glee. Emboldened, we ran a few tests and found they basically didn’t work in anything and went off disheartened into the corner for a bit of a sob. Turns out, while we were all busy boohooing, those browser boffins have actually being doing some work, and lo and behold, some of these APIs are even half usable. Mostly literally half usable—we’re still talking about browsers, after all. Now, of course they’re all a bit JavaScripty and are going to involve complex methods and maths and science and probably about a thousand dependancies from Github that will fall out of fashion while we’re still trying to locate the documentation, right? Well, no! So what if we actually wanted to use one of these APIs, say to impress our friends with our ability to make them wave their phones in front of their faces (because no one enjoys looking hapless more than the easily-technologically-impressed), how could we do something like that? Let’s find out. The Device Orientation API The phone-wavy API is more formally known as the DeviceOrientation Event Specification. It does a bunch of stuff that basically doesn’t work, but also gives us three values that represent orientation of a device (a phone, a tablet, probably not a desktop computer) around its x, y and z axes. You might think of it as pitch, roll and yaw if you like to spend your weekends wearing goggles and a leather hat. The main way we access these values is through an event listener, which can inform our code every time the value changes. Which is constantly, because you try and hold a phone still and then try and hold the Earth still too. The API calls those pitch, roll and yaw values alpha, beta and gamma. Chocks away: window.addEventListener('deviceorientation', function(e) { console.log(e.alpha); console.log(e.beta); console.log(e.gamma); }); If you look at this test page on your phone, you should be able to see the numbers change as you twirl the thing around your body like the dance partner you never had. Wrist strap recommended. One important note Like may of these newfangled APIs, Device Orientation is only available over HTTPS. We’re not allowed to have too much fun without protection, so make sure that you’re working on a secure line. I’ve found a quick and easy way to share my local dev environment over TLS with my devices is to use an ngrok tunnel. ngrok http -host-header=rewrite mylocaldevsite.dev:80 ngrok will then set up a tunnel to your dev site with both HTTP and HTTPS URL options. You, of course, want the HTTPS option. Right, where were we? Make something to look at It’s all well and good having a bunch of numbers, but they’re no use unless we do something with them. Something creative. Something to inspire the generations. Or we could just build that Facebook panoramic image viewer thing (because most of us are familiar with it and we’re not trying to be too clever here). Yeah, let’s just build one of those. Our basic framework is going to be similar to that used for an image carousel. We have a container, constrained in size, and CSS overflow property set to hidden. Into this we place our wide content and use positioning to move the content back and forth behind the ‘window’ so that the part we want to show is visible. Here it is mocked up with a slider to set the position. When you release the slider, the position updates. (This actually tests best on desktop with your window slightly narrowed.) The details of the slider aren’t important (we’re about to replace it with phone-wavy goodness) but the crucial part is that moving the slider results in a function call to position the image. This takes a percentage value (0-100) with 0 being far left and 100 being far right (or ‘alt-nazi’ or whatever). var position_image = function(percent) { var pos = (img_W / 100)*percent; img.style.transform = 'translate(-'+pos+'px)'; }; All this does is figure out what that percentage means in terms of the image width, and set the transform: translate(…); CSS property to move the image. (We use translate because it might be a bit faster to animate than left/right positioning.) Ok. We can now read the orientation values from our device, and we can programatically position the image. What we need to do is figure out how to convert those raw orientation values into a nice tidy percentage to pass to our function and we’re done. (We’re so not done.) The maths bit If we go back to our raw values test page and make-believe that we have a fascinating panoramic image of some far-off beach or historic monument to look at, you’ll note that the main value that is changing as we swing back and forth is the ‘alpha’ value. That’s the one we want to track. As our goal here is hey, these APIs are interesting and fun and not let’s build the world’s best panoramic image viewer, we’ll start by making a few assumptions and simplifications: When the image loads, we’ll centre the image and take the current nose-forward orientation reading as the middle. Moving left, we’ll track to the left of the image (lower percentage). Moving right, we’ll track to the right (higher percentage). If the user spins round, does cartwheels or loads the page then hops on a plane and switches earthly hemispheres, they’re on their own. Nose-forward When the page loads, the initial value of alpha gives us our nose-forward position. In Safari on iOS, this is normalised to always be 0, whereas most everywhere else it tends to be bound to pointy-uppy north. That doesn’t really matter to us, as we don’t know which direction the user might be facing in anyway — we just need to record that initial state and then use it to compare any new readings. var initial_position = null; window.addEventListener('deviceorientation', function(e) { if (initial_position === null) { initial_position = Math.floor(e.alpha); }; var current_position = initial_position - Math.floor(e.alpha); }); (I’m rounding down the values with Math.floor() to make debugging easier - we’ll take out the rounding later.) We get our initial position if it’s not yet been set, and then calculate the current position as a difference between the new value and the stored one. These values are weird One thing you need to know about these values, is that they range from 0 to 360 but then you also get weird left-of-zero values like -2 and whatever. And they wrap past 360 back to zero as you’d expect if you do a forward roll. What I’m interested in is working out my rotation. If 0 is my nose-forward position, I want a positive value as I turn right, and a negative value as I turn left. That puts the awkward 360-tipping point right behind the user where they can’t see it. var rotation = current_position; if (current_position > 180) rotation = current_position-360; Which way up? Since we’re talking about orientation, we need to remember that the values are going to be different if the device is held in portrait on landscape mode. See for yourself - wiggle it like a steering wheel and you get different values. That’s easy to account for when you know which way up the device is, but in true browser style, the API for that bit isn’t well supported. The best I can come up with is: var screen_portrait = false; if (window.innerWidth < window.innerHeight) { screen_portrait = true; } It works. Then we can use screen_portrait to branch our code: if (screen_portrait) { if (current_position > 180) rotation = current_position-360; } else { if (current_position < -180) rotation = 360+current_position; } Here’s the code in action so you can see the values for yourself. If you change screen orientation you’ll need to refresh the page (it’s a demo!). Limiting rotation Now, while the youth of today are rarely seen without a phone in their hands, it would still be unreasonable to ask them to spin through 360° to view a photo. Instead, we need to limit the range of movement to something like 60°-from-nose in either direction and normalise our values to pan the entire image across that 120° range. -60 would be full-left (0%) and 60 would be full-right (100%). If we set max_rotation = 60, that code ends up looking like this: if (rotation > max_rotation) rotation = max_rotation; if (rotation < (0-max_rotation)) rotation = 0-max_rotation; var percent = Math.floor(((rotation + max_rotation)/(max_rotation*2))*100); We should now be able to get a rotation from -60° to +60° expressed as a percentage. Try it for yourself. The big reveal All that’s left to do is pass that percentage to our image positioning function and would you believe it, it might actually work. position_image(percent); You can see the final result and take it for a spin. Literally. So what have we made here? Have we built some highly technical panoramic image viewer to aid surgeons during life-saving operations using only JavaScript and some slightly questionable mathematics? No, my friends, we have not. Far from it. What we have made is progress. We’ve taken a relatively newly available hardware API and a bit of simple JavaScript and paired it with existing CSS knowledge and made something that we didn’t have this morning. Something we probably didn’t even want this morning. Something that if you take a couple of steps back and squint a bit might be a prototype for something vaguely interesting. But more importantly, we’ve learned that our browsers are just a little bit more capable than we thought. The web platform is maturing rapidly. There are new, relatively unexplored APIs for doing all sorts of crazy thing that are often dismissed as the preserve of native apps. Like some sort of app marmalade. Poppycock. The web is an amazing, exciting place to create things. All it takes is some base knowledge of the fundamentals, a creative mind and a willingness to learn. We have those! So let’s create things. 2016 Drew McLellan drewmclellan 2016-12-24T00:00:00+00:00 https://24ways.org/2016/taking-device-orientation-for-a-spin/ code
308 How to Make a Chrome Extension to Delight (or Troll) Your Friends If you’re like me, you grew up drawing mustaches on celebrities. Every photograph was subject to your doodling wrath, and your brilliance was taken to a whole new level with computer programs like Microsoft Paint. The advent of digital cameras meant that no one was safe from your handiwork, especially not your friends. And when you finally got your hands on Photoshop, you spent hours maniacally giggling at your artistic genius. But today is different. You’re a serious adult with important things to do and a reputation to uphold. You keep up with modern web techniques and trends, and have little time for fun other than a random Giphy on Slack… right? Nope. If there’s one thing 2016 has taught me, it’s that we—the self-serious, world-changing tech movers and shakers of the universe—haven’t changed one bit from our younger, more delightable selves. How do I know? This year I created a Chrome extension called Tabby Cat and watched hundreds of thousands of people ditch productivity for randomly generated cats. Tabby Cat replaces your new tab page with an SVG cat featuring a silly name like “Stinky Dinosaur” or “Tiny Potato”. Over time, the cats collect goodies that vary in absurdity from fishbones to lawn flamingos to Raybans. Kids and adults alike use this extension, and analytics show the majority of use happens Monday through Friday from 9-5. The popularity of Tabby Cat has convinced me there’s still plenty of room in our big, grown-up hearts for fun. Today, we’re going to combine the formula behind Tabby Cat with your intrinsic desire to delight (or troll) your friends, and create a web app that generates your friends with random objects and environments of your choosing. You can publish it as a Chrome extension to replace your new tab, or simply host it as a website and point to it with the New Tab Redirect extension. Here’s a sneak peek at my final result featuring my partner, my cat, and I in cheerfully weird accessories. Your result will look however you want it to. Along the way, we’ll cover how to build a Chrome extension that replaces the new tab page, and explore ways to program randomness into your work to create something truly delightful. What you’ll need Adobe Illustrator (or a similar illustration program to export PNG) Some images of your friends A text editor Note: This can be as simple or as complex as you want it to be. Most of the application is pre-built so you can focus on kicking back and getting in touch with your creative side. If you want to dive in deeper, you’ll find ways to do it. Getting started Download a local copy of the boilerplate for today’s tutorial here, and open it in a text editor. Inside, you’ll find a simple web app that you can run in Chrome. Open index.html in Chrome. You should see a grey page that says “Noname”. Open template.pdf in Adobe Illustrator or a similar program that can export PNG. The file contains an artboard measuring 800px x 800px, with a dotted blue outline of a face. This is your template. Note: We’re using Google Chrome to build and preview this application because the end-result is a Chrome extension. This means that the application isn’t totally cross-browser compatible, but that’s okay. Step 1: Gather your friends The first thing to do is choose who your muses are. Since the holidays are upon us, I’d suggest finding inspiration in your family. Create your artwork For each person, find an image where their face is pointed as forward as possible. Place the image onto the Artwork layer of the Illustrator file, and line up their face with the template. Then, rename the artboard something descriptive like face_bob. Here’s my crew: As you can see, my use of the word “family” extends to cats. There’s no judgement here. Notice that some of my photos don’t completely fill the artboard–that’s fine. The images will be clipped into ovals when they’re rendered in the application. Now, export your images by following these steps: Turn the Template layer off and export the images as PNGs. In the Export dialog, tick the “Use Artboards” checkbox and enter the range with your faces. Export at 72ppi to keep things running fast. Save your images into the images/ folder in your project. Add your images to config.js Open scripts/config.js. This is where you configure your extension. Add key value pairs to the faces object. The key should be the person’s name, and the value should be the filepath to the image. faces: { leslie: 'images/face_leslie.png', kyle: 'images/face_kyle.png', beep: 'images/face_beep.png' } The application will choose one of these options at random each time you open a new tab. This pattern is used for everything in the config file. You give the application groups of choices, and it chooses one at random each time it loads. The only thing that’s special about the faces object is that person’s name will also be displayed when their face is chosen. Now, when you refresh the project in Chrome, you should see one of your friends along with their name, like this: Congrats, you’re off and running! Step 2: Add adjectives Now that you’ve loaded your friends into the application, it’s time to call them names. This step definitely yields the most laughs for the least amount of effort. Add a list of adjectives into the prefixes array in config.js. To get the words flowing, I took inspiration from ways I might describe some of my relatives during a holiday gathering… prefixes: [ 'Loving', 'Drunk', 'Chatty', 'Merry', 'Creepy', 'Introspective', 'Cheerful', 'Awkward', 'Unrelatable', 'Hungry', ... ] When you refresh Chrome, you should see one of these words prefixed before your friend’s name. Voila! Step 3: Choose your color palette Real talk: I’m bad at choosing color palettes, so I have a trick up my sleeve that I want to share with you. If you’ve been blessed with the gift of color aptitude, skip ahead. How to choose colors To create a color palette, I start by going to a Coolors.co, and I hit the spacebar until I find a palette that I like. We need a wide gamut of hues for our palette, so lock down colors you like and keep hitting the spacebar until you find a nice, full range. You can use as many or as few colors as you like. Copy these colors into your swatches in Adobe Illustrator. They’ll be the base for any illustrations you create later. Now you need a set of background colors. Here’s my trick to making these consistent with your illustration palette without completely blending in. Use the “Adjust Palette” tool in Coolors to dial up the brightness a few notches, and the saturation down just a tad to remove any neon effect. These will be your background colors. Add your background colors to config.js Copy your hex codes into the bgColors array in config.js. bgColors: [ '#FFDD77', '#FF8E72', '#ED5E84', '#4CE0B3', '#9893DA', ... ] Now when you go back to Chrome and refresh the page, you’ll see your new palette! Step 4: Accessorize This is the fun part. We’re going to illustrate objects, accessories, lizards—whatever you want—and layer them on top of your friends. Your objects will be categorized into groups, and one option from each group will be randomly chosen each time you load the page. Think of a group like “hats” or “glasses”. This will allow combinations of accessories to show at once, without showing two of the same type on the same person. Create a group of accessories To get started, open up Illustrator and create a new artboard out of the template. Think of a group of objects that you can riff on. I found hats to be a good place to start. If you don’t feel like illustrating, you can use cut-out images instead. Next, follow the same steps as you did when you exported the faces. Here they are again: Turn the Template layer off and export the images as PNGs. In the Export dialog, tick the “Use Artboards” checkbox and enter the range with your hats. Export at 72ppi to keep things running fast. Save your images into the images/ folder in your project. Add your accessories to config.js In config.js, add a new key to the customProps object that describes the group of accessories that you just created. Its value should be an array of the filepaths to your images. This is my hats array: customProps: { hats: [ 'images/hat_crown.png', 'images/hat_santa.png', 'images/hat_tophat.png', 'images/hat_antlers.png' ] } Refresh Chrome and behold, accessories! Create as many more accessories as you want Repeat the steps above to create as many groups of accessories as you want. I went on to make glasses and hairstyles, so my final illustrator file looks like this: The last step is adding your new groups to the config object. List your groups in the order that you want them to be stacked in the DOM. My final output will be hair, then hats, then glasses: customProps: { hair: [ 'images/hair_bowl.png', 'images/hair_bob.png' ], hats: [ 'images/hat_crown.png', 'images/hat_santa.png', 'images/hat_tophat.png', 'images/hat_antlers.png' ], glasses: [ 'images/glasses_aviators.png', 'images/glasses_monacle.png' ] } And, there you have it! Randomly generated friends with random accessories. Feel free to go much crazier than I did. I considered adding a whole group of animals in celebration of the new season of Planet Earth, or even adding Sir David Attenborough himself, or doing a bit of role reversal and featuring the animals with little safari hats! But I digress… Step 5: Publish it It’s time to put this in your new tabs! You have two options: Publish it as a Chrome extension in the Chrome Web Store. Host it as a website and point to it with the New Tab Redirect extension. Today, we’re going to cover Option #1 because I want to show you how to make the simplest Chrome extension possible. However, I recommend Option #2 if you want to keep your project private. Every Chrome extension that you publish is made publicly available, so unless your friends want their faces published to an extension that anyone can use, I’d suggest sticking to Option #2. How to make a simple Chrome extension to replace the new tab page All you need to do to make your project into a Chrome extension is add a manifest.json file to the root of your project with the following contents. There are plenty of other properties that you can add to your manifest file, but these are the only ones that are required for a new tab replacement: { "manifest_version": 2, "name": "Your extension name", "version": "1.0", "chrome_url_overrides" : { "newtab": "index.html" } } To test your extension, you’ll need to run it in Developer Mode. Here’s how to do that: Go to the Extensions page in Chrome by navigating to chrome://extensions/. Tick the checkbox in the upper-right corner labelled “Developer Mode”. Click “Load unpacked extension…” and select this project. If everything is running smoothly, you should see your project when you open a new tab. If there are any errors, they should appear in a yellow box on the Extensions page. Voila! Like I said, this is a very light example of a Chrome extension, but Google has tons of great documentation on how to take things further. Check it out and see what inspires you. Share the love Now that you know how to make a new tab extension, go forth and create! But wield your power responsibly. New tabs are opened so often that they’ve become a part of everyday life–just consider how many tabs you opened today. Some people prefer to-do lists in their tabs, and others prefer cats. At the end of the day, let’s make something that makes us happy. Cheers! 2016 Leslie Zacharkow lesliezacharkow 2016-12-08T00:00:00+00:00 https://24ways.org/2016/how-to-make-a-chrome-extension/ code
314 Easy Ajax with Prototype There’s little more impressive on the web today than a appropriate touch of Ajax. Used well, Ajax brings a web interface much closer to the experience of a desktop app, and can turn a bear of an task into a pleasurable activity. But it’s really hard, right? It involves all the nasty JavaScript that no one ever does often enough to get really good at, and the browser support is patchy, and urgh it’s just so much damn effort. Well, the good news is that – ta-da – it doesn’t have to be a headache. But man does it still look impressive. Here’s how to amaze your friends. Introducing prototype.js Prototype is a JavaScript framework by Sam Stephenson designed to help make developing dynamic web apps a whole lot easier. In basic terms, it’s a JavaScript file which you link into your page that then enables you to do cool stuff. There’s loads of capability built in, a portion of which covers our beloved Ajax. The whole thing is freely distributable under an MIT-style license, so it’s good to go. What a nice man that Mr Stephenson is – friends, let us raise a hearty cup of mulled wine to his good name. Cheers! sluurrrrp. First step is to download the latest Prototype and put it somewhere safe. I suggest underneath the Christmas tree. Cutting to the chase Before I go on and set up an example of how to use this, let’s just get to the crux. Here’s how Prototype enables you to make a simple Ajax call and dump the results back to the page: var url = 'myscript.php'; var pars = 'foo=bar'; var target = 'output-div'; var myAjax = new Ajax.Updater(target, url, {method: 'get', parameters: pars}); This snippet of JavaScript does a GET to myscript.php, with the parameter foo=bar, and when a result is returned, it places it inside the element with the ID output-div on your page. Knocking up a basic example So to get this show on the road, there are three files we need to set up in our site alongside prototype.js. Obviously we need a basic HTML page with prototype.js linked in. This is the page the user interacts with. Secondly, we need our own JavaScript file for the glue between the interface and the stuff Prototype is doing. Lastly, we need the page (a PHP script in my case) that the Ajax is going to make its call too. So, to that basic HTML page for the user to interact with. Here’s one I found whilst out carol singing: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>Easy Ajax</title> <script type="text/javascript" src="prototype.js"></script> <script type="text/javascript" src="ajax.js"></script> </head> <body> <form method="get" action="greeting.php" id="greeting-form"> <div> <label for="greeting-name">Enter your name:</label> <input id="greeting-name" type="text" /> <input id="greeting-submit" type="submit" value="Greet me!" /> </div> <div id="greeting"></div> </form> </body> </html> As you can see, I’ve linked in prototype.js, and also a file called ajax.js, which is where we’ll be putting our glue. (Careful where you leave your glue, kids.) Our basic example is just going to take a name and then echo it back in the form of a seasonal greeting. There’s a form with an input field for a name, and crucially a DIV (greeting) for the result of our call. You’ll also notice that the form has a submit button – this is so that it can function as a regular form when no JavaScript is available. It’s important not to get carried away and forget the basics of accessibility. Meanwhile, back at the server So we need a script at the server which is going to take input from the Ajax call and return some output. This is normally where you’d hook into a database and do whatever transaction you need to before returning a result. To keep this as simple as possible, all this example here will do is take the name the user has given and add it to a greeting message. Not exactly Web 2-point-HoHoHo, but there you have it. Here’s a quick PHP script – greeting.php – that Santa brought me early. <?php $the_name = htmlspecialchars($_GET['greeting-name']); echo "<p>Season's Greetings, $the_name!</p>"; ?> You’ll perhaps want to do something a little more complex within your own projects. Just sayin’. Gluing it all together Inside our ajax.js file, we need to hook this all together. We’re going to take advantage of some of the handy listener routines and such that Prototype also makes available. The first task is to attach a listener to set the scene once the window has loaded. He’s how we attach an onload event to the window object and get it to call a function named init(): Event.observe(window, 'load', init, false); Now we create our init() function to do our evil bidding. Its first job of the day is to hide the submit button for those with JavaScript enabled. After that, it attaches a listener to watch for the user typing in the name field. function init(){ $('greeting-submit').style.display = 'none'; Event.observe('greeting-name', 'keyup', greet, false); } As you can see, this is going to make a call to a function called greet() onkeyup in the greeting-name field. That function looks like this: function greet(){ var url = 'greeting.php'; var pars = 'greeting-name='+escape($F('greeting-name')); var target = 'greeting'; var myAjax = new Ajax.Updater(target, url, {method: 'get', parameters: pars}); } The key points to note here are that any user input needs to be escaped before putting into the parameters so that it’s URL-ready. The target is the ID of the element on the page (a DIV in our case) which will be the recipient of the output from the Ajax call. That’s it No, seriously. That’s everything. Try the example. Amaze your friends with your 1337 Ajax sk1llz. 2005 Drew McLellan drewmclellan 2005-12-01T00:00:00+00:00 https://24ways.org/2005/easy-ajax-with-prototype/ code
315 Edit-in-Place with Ajax Back on day one we looked at using the Prototype library to take all the hard work out of making a simple Ajax call. While that was fun and all, it didn’t go that far towards implementing something really practical. We dipped our toes in, but haven’t learned to swim yet. So here is swimming lesson number one. Anyone who’s used Flickr to publish their photos will be familiar with the edit-in-place system used for quickly amending titles and descriptions on photographs. Hovering over an item turns its background yellow to indicate it is editable. A simple click loads the text into an edit box, right there on the page. Prototype includes all sorts of useful methods to help reproduce something like this for our own projects. As well as the simple Ajax GETs we learned how to do last time, we can also do POSTs (which we’ll need here) and a whole bunch of manipulations to the user interface – all through simple library calls. Here’s what we’re building, so let’s do it. Getting Started There are two major components to this process; the user interface manipulation and the Ajax call itself. Our set-up is much the same as last time (you may wish to read the first article if you’ve not already done so). We have a basic HTML page which links in the prototype.js file and our own editinplace.js. Here’s what Santa dropped down my chimney: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>Edit-in-Place with Ajax</title> <link href="editinplace.css" rel="Stylesheet" type="text/css" /> <script src="prototype.js" type="text/javascript"></script> <script src="editinplace.js" type="text/javascript"></script> </head> <body> <h1>Edit-in-place</h1> <p id="desc">Dashing through the snow on a one horse open sleigh.</p> </body> </html> So that’s our page. The editable item is going to be the <p> called desc. The process goes something like this: Highlight the area onMouseOver Clear the highlight onMouseOut If the user clicks, hide the area and replace with a <textarea> and buttons Remove all of the above if the user cancels the operation When the Save button is clicked, make an Ajax POST and show that something’s happening When the Ajax call comes back, update the page with the new content Events and Highlighting The first step is to offer feedback to the user that the item is editable. This is done by shading the background colour when the user mouses over. Of course, the CSS :hover pseudo class is a straightforward way to do this, but for three reasons, I’m using JavaScript to switch class names. :hover isn’t supported on many elements in Internet Explorer for Windows I want to keep control over when the highlight switches off after an update, regardless of mouse position If JavaScript isn’t available we don’t want to end up with the CSS suggesting it might be With this in mind, here’s how editinplace.js starts: Event.observe(window, 'load', init, false); function init(){ makeEditable('desc'); } function makeEditable(id){ Event.observe(id, 'click', function(){edit($(id))}, false); Event.observe(id, 'mouseover', function(){showAsEditable($(id))}, false); Event.observe(id, 'mouseout', function(){showAsEditable($(id), true)}, false); } function showAsEditable(obj, clear){ if (!clear){ Element.addClassName(obj, 'editable'); }else{ Element.removeClassName(obj, 'editable'); } } The first line attaches an onLoad event to the window, so that the function init() gets called once the page has loaded. In turn, init() sets up all the items on the page that we want to make editable. In this example I’ve just got one, but you can add as many as you like. The function madeEditable() attaches the mouseover, mouseout and click events to the item we’re making editable. All showAsEditable does is add and remove the class name editable from the object. This uses the particularly cunning methods Element.addClassName() and Element.removeClassName() which enable you to cleanly add and remove effects without affecting any styling the object may otherwise have. Oh, remember to add a rule for .editable to your style sheet: .editable{ color: #000; background-color: #ffffd3; } The Switch As you can see above, when the user clicks on an editable item, a call is made to the function edit(). This is where we switch out the static item for a nice editable textarea. Here’s how that function looks. function edit(obj){ Element.hide(obj); var textarea ='<div id="' + obj.id + '_editor"> <textarea id="' + obj.id + '_edit" name="' + obj.id + '" rows="4" cols="60">' + obj.innerHTML + '</textarea>'; var button = '<input id="' + obj.id + '_save" type="button" value="SAVE" /> OR <input id="' + obj.id + '_cancel" type="button" value="CANCEL" /></div>'; new Insertion.After(obj, textarea+button); Event.observe(obj.id+'_save', 'click', function(){saveChanges(obj)}, false); Event.observe(obj.id+'_cancel', 'click', function(){cleanUp(obj)}, false); } The first thing to do is to hide the object. Prototype comes to the rescue with Element.hide() (and of course, Element.show() too). Following that, we build up the textarea and buttons as a string, and then use Insertion.After() to place our new editor underneath the (now hidden) editable object. The last thing to do before we leave the user to edit is it attach listeners to the Save and Cancel buttons to call either the saveChanges() function, or to cleanUp() after a cancel. In the event of a cancel, we can clean up behind ourselves like so: function cleanUp(obj, keepEditable){ Element.remove(obj.id+'_editor'); Element.show(obj); if (!keepEditable) showAsEditable(obj, true); } Saving the Changes This is where all the Ajax fun occurs. Whilst the previous article introduced Ajax.Updater() for simple Ajax calls, in this case we need a little bit more control over what happens once the response is received. For this purpose, Ajax.Request() is perfect. We can use the onSuccess and onFailure parameters to register functions to handle the response. function saveChanges(obj){ var new_content = escape($F(obj.id+'_edit')); obj.innerHTML = "Saving..."; cleanUp(obj, true); var success = function(t){editComplete(t, obj);} var failure = function(t){editFailed(t, obj);} var url = 'edit.php'; var pars = 'id=' + obj.id + '&content=' + new_content; var myAjax = new Ajax.Request(url, {method:'post', postBody:pars, onSuccess:success, onFailure:failure}); } function editComplete(t, obj){ obj.innerHTML = t.responseText; showAsEditable(obj, true); } function editFailed(t, obj){ obj.innerHTML = 'Sorry, the update failed.'; cleanUp(obj); } As you can see, we first grab in the contents of the textarea into the variable new_content. We then remove the editor, set the content of the original object to “Saving…” to show that an update is occurring, and make the Ajax POST. If the Ajax fails, editFailed() sets the contents of the object to “Sorry, the update failed.” Admittedly, that’s not a very helpful way to handle the error but I have to limit the scope of this article somewhere. It might be a good idea to stow away the original contents of the object (obj.preUpdate = obj.innerHTML) for later retrieval before setting the content to “Saving…”. No one likes a failure – especially a messy one. If the Ajax call is successful, the server-side script returns the edited content, which we then place back inside the object from editComplete, and tidy up. Meanwhile, back at the server The missing piece of the puzzle is the server-side script for committing the changes to your database. Obviously, any solution I provide here is not going to fit your particular application. For the purposes of getting a functional demo going, here’s what I have in PHP. <?php $id = $_POST['id']; $content = $_POST['content']; echo htmlspecialchars($content); ?> Not exactly rocket science is it? I’m just catching the content item from the POST and echoing it back. For your application to be useful, however, you’ll need to know exactly which record you should be updating. I’m passing in the ID of my <div>, which is not a fat lot of use. You can modify saveChanges() to post back whatever information your app needs to know in order to process the update. You should also check the user’s credentials to make sure they have permission to edit whatever it is they’re editing. Basically the same rules apply as with any script in your application. Limitations There are a few bits and bobs that in an ideal world I would tidy up. The first is the error handling, as I’ve already mentioned. The second is that from an idealistic standpoint, I’d rather not be using innerHTML. However, the reality is that it’s presently the most efficient way of making large changes to the document. If you’re serving as XML, remember that you’ll need to replace these with proper DOM nodes. It’s also important to note that it’s quite difficult to make something like this universally accessible. Whenever you start updating large chunks of a document based on user interaction, a lot of non-traditional devices don’t cope well. The benefit of this technique, though, is that if JavaScript is unavailable none of the functionality gets implemented at all – it fails silently. It is for this reason that this shouldn’t be used as a complete replacement for a traditional, universally accessible edit form. It’s a great time-saver for those with the ability to use it, but it’s no replacement. See it in action I’ve put together an example page using the inert PHP script above. That is to say, your edits aren’t committed to a database, so the example is reset when the page is reloaded. 2005 Drew McLellan drewmclellan 2005-12-23T00:00:00+00:00 https://24ways.org/2005/edit-in-place-with-ajax/ code
320 DOM Scripting Your Way to Better Blockquotes Block quotes are great. I don’t mean they’re great for indenting content – that would be an abuse of the browser’s default styling. I mean they’re great for semantically marking up a chunk of text that is being quoted verbatim. They’re especially useful in blog posts. <blockquote> <p>Progressive Enhancement, as a label for a strategy for Web design, was coined by Steven Champeon in a series of articles and presentations for Webmonkey and the SxSW Interactive conference.</p> </blockquote> Notice that you can’t just put the quoted text directly between the <blockquote> tags. In order for your markup to be valid, block quotes may only contain block-level elements such as paragraphs. There is an optional cite attribute that you can place in the opening <blockquote> tag. This should contain a URL containing the original text you are quoting: <blockquote cite="http://en.wikipedia.org/wiki/Progressive_Enhancement"> <p>Progressive Enhancement, as a label for a strategy for Web design, was coined by Steven Champeon in a series of articles and presentations for Webmonkey and the SxSW Interactive conference.</p> </blockquote> Great! Except… the default behavior in most browsers is to completely ignore the cite attribute. Even though it contains important and useful information, the URL in the cite attribute is hidden. You could simply duplicate the information with a hyperlink at the end of the quoted text: <blockquote cite="http://en.wikipedia.org/wiki/Progressive_Enhancement"> <p>Progressive Enhancement, as a label for a strategy for Web design, was coined by Steven Champeon in a series of articles and presentations for Webmonkey and the SxSW Interactive conference.</p> <p class="attribution"> <a href="http://en.wikipedia.org/wiki/Progressive_Enhancement">source</a> </p> </blockquote> But somehow it feels wrong to have to write out the same URL twice every time you want to quote something. It could also get very tedious if you have a lot of quotes. Well, “tedious” is no problem to a programming language, so why not use a sprinkling of DOM Scripting? Here’s a plan for generating an attribution link for every block quote with a cite attribute: Write a function called prepareBlockquotes. Begin by making sure the browser understands the methods you will be using. Get all the blockquote elements in the document. Start looping through each one. Get the value of the cite attribute. If the value is empty, continue on to the next iteration of the loop. Create a paragraph. Create a link. Give the paragraph a class of “attribution”. Give the link an href attribute with the value from the cite attribute. Place the text “source” inside the link. Place the link inside the paragraph. Place the paragraph inside the block quote. Close the for loop. Close the function. Here’s how that translates to JavaScript: function prepareBlockquotes() { if (!document.getElementsByTagName || !document.createElement || !document.appendChild) return; var quotes = document.getElementsByTagName("blockquote"); for (var i=0; i<quotes.length; i++) { var source = quotes[i].getAttribute("cite"); if (!source) continue; var para = document.createElement("p"); var link = document.createElement("a"); para.className = "attribution"; link.setAttribute("href",source); link.appendChild(document.createTextNode("source")); para.appendChild(link); quotes[i].appendChild(para); } } Now all you need to do is trigger that function when the document has loaded: window.onload = prepareBlockquotes; Better yet, use Simon Willison’s handy addLoadEvent function to queue this function up with any others you might want to execute when the page loads. That’s it. All you need to do is save this function in a JavaScript file and reference that file from the head of your document using <script> tags. You can style the attribution link using CSS. It might look good aligned to the right with a smaller font size. If you’re looking for something to do to keep you busy this Christmas, I’m sure that this function could be greatly improved. Here are a few ideas to get you started: Should the text inside the generated link be the URL itself? If the block quote has a title attribute, how would you take its value and use it as the text inside the generated link? Should the attribution paragraph be placed outside the block quote? If so, how would you that (remember, there is an insertBefore method but no insertAfter)? Can you think of other instances of useful information that’s locked away inside attributes? Access keys? Abbreviations? 2005 Jeremy Keith jeremykeith 2005-12-05T00:00:00+00:00 https://24ways.org/2005/dom-scripting-your-way-to-better-blockquotes/ code
326 Don't be eval() JavaScript is an interpreted language, and like so many of its peers it includes the all powerful eval() function. eval() takes a string and executes it as if it were regular JavaScript code. It’s incredibly powerful and incredibly easy to abuse in ways that make your code slower and harder to maintain. As a general rule, if you’re using eval() there’s probably something wrong with your design. Common mistakes Here’s the classic misuse of eval(). You have a JavaScript object, foo, and you want to access a property on it – but you don’t know the name of the property until runtime. Here’s how NOT to do it: var property = 'bar'; var value = eval('foo.' + property); Yes it will work, but every time that piece of code runs JavaScript will have to kick back in to interpreter mode, slowing down your app. It’s also dirt ugly. Here’s the right way of doing the above: var property = 'bar'; var value = foo[property]; In JavaScript, square brackets act as an alternative to lookups using a dot. The only difference is that square bracket syntax expects a string. Security issues In any programming language you should be extremely cautious of executing code from an untrusted source. The same is true for JavaScript – you should be extremely cautious of running eval() against any code that may have been tampered with – for example, strings taken from the page query string. Executing untrusted code can leave you vulnerable to cross-site scripting attacks. What’s it good for? Some programmers say that eval() is B.A.D. – Broken As Designed – and should be removed from the language. However, there are some places in which it can dramatically simplify your code. A great example is for use with XMLHttpRequest, a component of the set of tools more popularly known as Ajax. XMLHttpRequest lets you make a call back to the server from JavaScript without refreshing the whole page. A simple way of using this is to have the server return JavaScript code which is then passed to eval(). Here is a simple function for doing exactly that – it takes the URL to some JavaScript code (or a server-side script that produces JavaScript) and loads and executes that code using XMLHttpRequest and eval(). function evalRequest(url) { var xmlhttp = new XMLHttpRequest(); xmlhttp.onreadystatechange = function() { if (xmlhttp.readyState==4 && xmlhttp.status==200) { eval(xmlhttp.responseText); } } xmlhttp.open("GET", url, true); xmlhttp.send(null); } If you want this to work with Internet Explorer you’ll need to include this compatibility patch. 2005 Simon Willison simonwillison 2005-12-07T00:00:00+00:00 https://24ways.org/2005/dont-be-eval/ code
327 Improving Form Accessibility with DOM Scripting The form label element is an incredibly useful little element – it lets you link the form field unquestionably with the descriptive label text that sits alongside or above it. This is a very useful feature for people using screen readers, but there are some problems with this element. What happens if you have one piece of data that, for various reasons (validation, the way your data is collected/stored etc), needs to be collected using several form elements? The classic example is date of birth – ideally, you’ll ask for the date of birth once but you may have three inputs, one each for day, month and year, that you also need to provide hints about the format required. The problem is that to be truly accessible you need to label each field. So you end up needing something to say “this is a date of birth”, “this is the day field”, “this is the month field” and “this is the day field”. Seems like overkill, doesn’t it? And it can uglify a form no end. There are various ways that you can approach it (and I think I’ve seen them all). Some people omit the label and rely on the title attribute to help the user through; others put text in a label but make the text 1 pixel high and merging in to the background so that screen readers can still get that information. The most common method, though, is simply to set the label to not display at all using the CSS display:none property/value pairing (a technique which, for the time being, seems to work on most screen readers). But perhaps we can do more with this? The technique I am suggesting as another alternative is as follows (here comes the pseudo-code): Start with a totally valid and accessible form Ensure that each form input has a label that is linked to its related form control Apply a class to any label that you don’t want to be visible (for example superfluous) Then, through the magic of unobtrusive JavaScript/the DOM, manipulate the page as follows once the page has loaded: Find all the label elements that are marked as superfluous and hide them Find out what input element each of these label elements is related to Then apply a hint about formatting required for input (gleaned from the original, now-hidden label text) – add it to the form input as default text Finally, add in a behaviour that clears or selects the default text (as you choose) So, here’s the theory put into practice – a date of birth, grouped using a fieldset, and with the behaviours added in using DOM, and here’s the JavaScript that does the heavy lifting. But why not just use display:none? As demonstrated at Juicy Studio, display:none seems to work quite well for hiding label elements. So why use a sledge hammer to crack a nut? In all honesty, this is something of an experiment, but consider the following: Using the DOM, you can add extra levels of help, potentially across a whole form – or even range of forms – without necessarily increasing your markup (it goes beyond simply hiding labels) Screen readers today may identify a label that is set not to display, but they may not in the future – this might provide a way around By expanding this technique above, it might be possible to visually change the parent container that groups these items – in this case, a fieldset and legend, which are notoriously difficult to style consistently across different browsers – while still retaining the underlying semantic/logical structure Well, it’s an idea to think about at least. How is it for you? How else might you use DOM scripting to improve the accessiblity or usability of your forms? 2005 Ian Lloyd ianlloyd 2005-12-03T00:00:00+00:00 https://24ways.org/2005/improving-form-accessibility-with-dom-scripting/ code
335 Naughty or Nice? CSS Background Images Web Standards based development involves many things – using semantically sound HTML to provide structure to our documents or web applications, using CSS for presentation and layout, using JavaScript responsibly, and of course, ensuring that all that we do is accessible and interoperable to as many people and user agents as we can. This we understand to be good. And it is good. Except when we don’t clearly think through the full implications of using those techniques. Which often happens when time is short and we need to get things done. Here are some naughty examples of CSS background images with their nicer, more accessible counterparts. Transaction related messages I’m as guilty of this as others (or, perhaps, I’m the only one that has done this, in which case this can serve as my holiday season confessional) We use lovely little icons to show status messages for a transaction to indicate if the action was successful, or was there a warning or error? For example: “Your postal/zip code was not in the correct format.” Notice that we place a nice little icon there, and use background colours and borders to convey a specific message: there was a problem that needs to be fixed. Notice that all of this visual information is now contained in the CSS rules for that div: <div class="error"> <p>Your postal/zip code was not in the correct format.</p> </div> div.error { background: #ffcccc url(../images/error_small.png) no-repeat 5px 4px; color: #900; border-top: 1px solid #c00; border-bottom: 1px solid #c00; padding: 0.25em 0.5em 0.25em 2.5em; font-weight: bold; } Using this approach also makes it very easy to create a div.success and div.warning CSS rules meaning we have less to change in our HTML. Nice, right? No. Naughty. Visual design communicates The CSS is being used to convey very specific information. The choice of icon, the choice of background colour and borders tell us visually that there is something wrong. With the icon as a background image – there is no way to specify any alt text for the icon, and significant meaning is lost. A screen reader user, for example, misses the fact that it is an “error.” The solution? Ask yourself: what is the bare minimum needed to indicate there was an error? Currently in the absence of CSS there will be no icon – which (I’m hoping you agree) is critical to communicating there was an error. The icon should be considered content and not simply presentational. The borders and background colour are certainly much less critical – they belong in the CSS. Lets change the code to place the image directly in the HTML and using appropriate alt text to better communicate the meaning of the icon to all users: <div class="bettererror"> <img src="images/error_small.png" alt="Error" /> <p>Your postal/zip code was not in the correct format.</p> </div> div.bettererror { background-color: #ffcccc; color: #900; border-top: 1px solid #c00; border-bottom: 1px solid #c00; padding: 0.25em 0.5em 0.25em 2.5em; font-weight: bold; position: relative; min-height: 1.25em; } div.bettererror img { display: block; position: absolute; left: 0.25em; top: 0.25em; padding: 0; margin: 0; } div.bettererror p { position: absolute; left: 2.5em; padding: 0; margin: 0; } Compare these two examples of transactional messages Status of a Record This example is pretty straightforward. Consider the following: a real estate listing on a web site. There are three “states” for a listing: new, normal, and sold. Here’s how they look: Example of a New Listing Example of A Sold Listing If we (forgive the pun) blindly apply the “use a CSS background image” technique we clearly run into problems with the new and sold images – they actually contain content with no way to specify an alternative when placed in the CSS. In this case of the “new” image, we can use the same strategy as we used in the first example (the transaction result). The “new” image should be considered content and is placed in the HTML as part of the <h2>...</h2> that identifies the listing. However when considering the “sold” listing, there are less changes to be made to keep the same look by leaving the “SOLD” image as a background image and providing the equivalent information elsewhere in the listing – namely, right in the heading. For those that can’t see the background image, the status is communicated clearly and right away. A screen reader user that is navigating by heading or viewing a listing will know right away that a particular property is sold. Of note here is that in both cases (new and sold) placing the status near the beginning of the record helps with a zoom layout as well. Better Example of A Sold Listing Summary Remember: in the holiday season, its what you give that counts!! Using CSS background images is easy and saves time for you but think of the children. And everyone else for that matter… CSS background images should only be used for presentational images, not for those that contain content (unless that content is already represented and readily available elsewhere). 2005 Derek Featherstone derekfeatherstone 2005-12-20T00:00:00+00:00 https://24ways.org/2005/naughty-or-nice-css-background-images/ code
19 In Their Own Write: Web Books and their Authors The currency of written communication — words on the page, words on the screen — comprises many denominations. To further our ends in web design and development, we freely spend and receive several: tweets aphoristic and trenchant, banal and perfunctory; blog posts and articles that call us to action or reflection; anecdotes, asides, comments, essays, guides, how-tos, manuals, musings, notes, opinions, stories, thoughts, tips pro and not-so-pro. So many, many words. Our industry (so much more than this, but what on earth are we, collectively?), our community thrives on writing and sharing knowledge and experience. 24 ways is a case in point. Everyone can learn and contribute through reading and writing — it’s what we’ve always done. To web authors and readers seeking greater returns, though, broader culture has vouchsafed an enduring and singular artefact: the book. Last month I asked a small sample of web book authors if they would be prepared to answer a few questions; most of them kindly agreed. In spirit, the survey was informal: I had neither hypothesis nor unground axe. I work closely with writers — and yes, I’ve edited or copy-edited books by several of the authors I surveyed — and wanted to share their thoughts about what it was like to write a book (“…it was challenging to find a coherent narrative”), why they did it (“Who wouldn’t want to?”) and what they learned from the experience (“That I could!”). Reasons for writing a book In web development the connection between authors and readers is unusually close and immediate. Working in our medium precipitates a unity that’s rare elsewhere. Yet writing and publishing a book, even during the current books revolution, is something only a few of us attempt and it remains daunting and a little remote. What spurs an author to try it? For some, it’s a deeply held resistance to prevailing trends: I felt that designers and developers needed to be shaken out of what seemed to me had been years of stagnation. —Andrew Clarke Or even a desire to protect us from ourselves: I felt that without a book that clearly defined progressive enhancement in a very approachable and succinct fashion, the web was at risk. I was seeing Tim Berners-Lee’s vision of universal availability slip away… —Aaron Gustafson Sometimes, there’s a knowledge gap to be filled by an author with the requisite excitement and need to communicate. Jon Hicks took his “pet subject” and was “enthused enough to want to spend all that time writing”, particularly because: …there was a gap in the market for it. No one had done it before, and it’s still on its own out there, with no competition. It felt like I was able to contribute something. Cennydd Bowles felt a professional itch at a particular point in his career, understanding that [a]s a designer becomes more senior, they start looking for ways to scale the effects of their work. For some, that leads into management. For others, into writing. Often, though, it’s also simply a personal challenge and ambition to explore a subject at length and create something substantial. Anna Debenham describes a motivation shared by several authors: To be able to point to something more tangible than an article and be able to say “I did that.” That sense of a book’s significance, its heft and gravity even, stems partly from the cultural esteem which honours books and their authors. Books have a long history as sources of wisdom, truth and power. Even with more books being published each year than ever before, writing one is still commonly considered a laudable achievement, including in our field. Challenges of writing a book Received wisdom has it that writing online should be brief and chunky and approachable: get to the point; divide it all up; subheadings and lists are our friends; write like you’re talking; no one has time to read. Much of such advice is true. Followed well, it lends our writing punch and pith, vigour and vim. The web is nimble, the web keeps up, and it suits what we write about developing for it. It’s perfect for delivering our observations, queries and investigations into all the various aspects of the work, professional and personal. Yet even for digital natives like web authors, books printed and electronic retain an attractive glister. Ideas can be developed more fully, their consequences explored to greater depth and extended with more varied examples, and the whole conveyed with more eloquence, more style. Why shouldn’t authors delay their conclusions if the intervening text is apposite, rich with value and helps to flesh out the skeleton of an argument? Conclusions might or might not be reached, of course, but a writer is at greater liberty in a book to digress in tangential and interesting ways. Writing a book involves committing time, energy, thought and money. As Brian Suda found, it can be tough “getting the ideas out of my head into a cohesive blob of text.” Some authors end up talking to themselves… It helps me to keep a real person in mind, someone who I’m talking to as I write. Sometimes I have the same conversations over and over in my head. —Andrew Clarke …while others are thinking ahead, concerned with how their book will be received: Would anyone want to read it? Would they care? Would it be respected by my peers? —Joe Leech Challenges that arose time and again included “starting” and “getting words on the page” as well as “knowing when to stop” or “letting go”. Personal organization problems and those caused by publishers were also widely mentioned. Time loomed large. Making time, finding time. Giving up “sleep and some sanity” and realizing “it will take you far, far, far longer than you naively assumed”. Importantly, writing time is time away from gainful employment: Aaron Gustafson found the hardest thing about writing a book to be “the loss of income while I was writing.” Perils and pleasures of editing Editing, be it structural, technical or copy editing, is founded on reciprocity. Without openness and a shared belief that the book is worthwhile, work can founder in acrimony and mistrust. Editors are a book’s first and most critical (in every sense) readers. Effective and perceptive editing makes a book as good as it can be, finding the book within the draft like sculpture reveals the statue in the stone. A good editor calls you out on poor assumptions and challenges you to really clarify your thinking. Whilst it can be difficult during the process to have your thinking challenged, it’s always been worth it — for me personally — in the long run. A good editor also reins you in when you’ve perhaps wandered off track or taken a little too long to make a point. —Christopher Murphy Andy Croll found editing “all positive” and Aaron Gustafson loves “working with a strong editor […] I want someone to tell it to me straight.” But it can be a rollercoaster, “both terrifying and the real moment of elation”. Mixed emotions during the editing process are common: It was very uncomfortable! I knew it was making the work stronger, but it was awkward having my inconsistencies and waffle picked apart. —Jon Hicks It can be distressing to have written work looked over by a professional, particularly for first-time book authors whose expertise lies elsewhere: I was a little nervous because I don’t consider myself a skilled writer — I never dreamed of becoming an author. I’m a designer, after all. —Geri Coady Communication is key, particularly when it comes to checking or changing the author’s words. I like a good banter between me and the tech editor — if we can have a proper argument in Word comments, that’s great. —Rachel Andrew But if handled poorly, small battles can break out. Rachel Andrew again: However, having had plenty of times where the technical editor has done nothing more than give a cursory glance, I started to leave little issues in for them to spot. If they picked them up I knew they were actually testing the code and I could be sure the work was being properly tech edited. If they didn’t spot them, I’d find someone myself to read through and check it! A major concern for writers is that their voices will be altered, filtered, mangled or otherwise obscured by the editing process. Good copy editing must remain unnoticed while enhancing the author’s voice in print. Donna Spencer appreciated the way her editor “tidied up my work and made it a million times better, but left it sounding exactly like me.” Similarly, Andrew Travers “was incredibly impressed at how well my editor tightened up my own writing without it feeling like another’s voice” and Val Head sums up the consensus that: the editor was able to help me express what I was trying to say in a better way […] I want to have editors for everything now. At the keyboard, keep your friends close, but your editors closer. Publishing and publishers Conditions ought to militate against the allure of writing a book about web design and development. More books are published each year than ever before, so readerships elude new authors and readers can struggle to find authors to trust in their fields of interest. New spaces for more expansive online writing about working on and with the web are opening up (sites like Contents Magazine and STET), and seminal online web development texts are emerging. Publishing online is simple, far-reaching and immediate. Much more so than articles and blog posts, books take time to research, write and read; add the complexity of commissioning, editing, designing, proofreading, printing, marketing and distribution processes, and it can take many months, even years to publish. The ceaseless headlong momentum of the web can leave articles more than a few weeks old whimpering in its wake, but updating them at least is straightforward; printed books about web development can depreciate as rapidly as the technology and techniques they describe, while retaining the “terrifying permanence that print bestows: your opinions will follow you forever”. So much moves on, and becomes out of date. Companies featured get bought by larger companies and die, techniques improve and solutions featured become terribly out of date. Unlike a website, which could be updated continuously, a book represents the thinking ‘at that time’. —Jon Hicks Publishers work hard to mitigate these issues, promoting new books and new authors, bringing authors and readers together under a trusted banner. When a publisher packages up and releases a writer’s words, it confers a seal of approval and “badge of quality”, very important to new authors. Publishers have other benefits to offer, from expert knowledge: My publisher was extraordinarily supportive (and patient). Her expertise in my chosen subject was both a pressure (I didn’t want to let her down) and a reassurance (if she liked it, I knew it was going to be fine). —Andrew Travers …to systems and support mechanisms set up specifically to encourage writers and publish books: Working as a team means you’re bringing in everyone’s expertise. —Chui Chui Tan As a writer, the best part about writing for a publisher was the writing infrastructure offered. —Christopher Murphy There can be drawbacks, however, and the occasional horror story: We were just one small package on a huge conveyor belt. The publisher’s process ruled all. —Cennydd Bowles It’s only looking back I realise how poorly some publishers treat writers — especially when the work is so poorly remunerated.My worst experience was when a publisher decided, after I had completed the book, that they wanted to push a different take on the subject than the brief I had been given. Instead of talking to me, they rewrote chunks of my words, turning my advice into something that I would never have encouraged. Ultimately, I refused to let the book go out under my name alone, and I also didn’t really promote the book as I would have had to point out the things I did not agree with that had been inserted! —Rachel Andrew Self-publishing is now a realistic option for web authors, and can offers “complete control over the end product” as well as the possibility of earning more than a “pathetic author revenue percentage”. There can be substantial barriers, of course, as self-publishing authors must face for themselves the risks and challenges conventional publishers usually bear. Ideally, creating a book is a collaboration between author and publisher. Geri Coady found that “working with my publisher felt more like working with a partner or co-worker, rather than working for a boss.” Wise words So, after meeting the personal costs of writing and publishing a web book — fear, uncertainty, doubt, typing (so much typing) — and then smelling the roses of success, what’s left for an author to say? Some words, perhaps, to people thinking of writing a book. Donna Spencer identifies a stumbling block common to many writers with an insight into the writing process: Having talked to a lot of potential authors, I think most have the problem that they haven’t actually figured out the ‘answer’ to their premise yet. They feel like they are stuck in the writing, but they are actually stuck in the thinking. For some no-nonsense, straightforward advice to cut through any anxiety or inadequacy, Rachel Andrew encourages authors to “treat it like any other work. There is no mystery to writing, you just have to write. Schedule the time, sit down, write words.” Tim Brown notes the importance of the editing process to refine a book and help authors reach their readers: Hire good editors. Editors are amazing thinkers who can vastly improve the quality and clarity of a piece of writing. We are too much beholden to the practical demands and challenges of technology, so Aaron Gustafson suggests a writer should “favor philosophies over techniques and your book will have a longer shelf life.” Most intimations of renown and recognition are nipped in the bud by Joe Leech’s warning: “Don’t expect fame and fortune.” Although Cennydd Bowles’ bitter experience can be discouraging: The sacrifices required are immense. You probably won’t make it. …he would do things differently for a future book: I would approach the book with […] far more concern about conveying the damn joy of what I do for a living. The pleasure of writing, not just having written is captured by James Chudley when he recalls: How much I enjoy writing and also how much I enjoy the discipline or having a side project like this. It’s a really good supplement to working life. And Jon Hicks has words that any author will find comforting: It will be fine. Everything will be fine. Just get on with it! As the web expands effortlessly and ceaselessly to make room for all our words, yet it can also discourage the accumulation of any particular theme in one space, dividing rich seams and scattering knowledge across the web’s surface and into its deepest reaches. How many words become weightless and insubstantial, signals lost in the constant white noise of indistinguishable voices, unloved, unlinked? The web forgets constantly, despite the (somewhat empty) promise of digital preservation: articles and data are sacrificed to expediency, profit and apathy; online attention, acknowledgement and interest wax and wane in days, hours even. Books can encourage deeper engagement in readers, and foster faith in an author, particularly if released under the imprint of a recognized publisher within the field. And books are changing. Although still not widely adopted, EPUB3 is the new standard in ebooks, bringing with it new possibilities for interaction and connection: readers with the text; readers with readers; and readers with authors. EPUB3 is built on HTML, CSS and JavaScript — sound familiar? In the past, we took what we could from the printed page to make the web; now books are rubbing up against what we’ve made. So: a book. Ever thought you could write one? Should write one? Would? I’d like to thank all the authors who wrote their books and answered my questions. Rachel Andrew · CSS3 Layout Modules, The CSS3 Anthology and more Cennydd Bowles · Undercover User Experience Design, with James Box Tim Brown · Combining Typefaces James Chudley · Usability of Web Photos Andrew Clarke · Hardboiled Web Design Geri Coady · Colour Accessibility Andy Croll · HTML Email Anna Debenham · Front-end Style Guides Aaron Gustafson · Adaptive Web Design Val Head · CSS Animations Jon Hicks · The Icon Handbook Joe Leech · Psychology for Designers Christopher Murphy · The Craft of Words, with Niklas Persson Donna Spencer · Information Architecture, Card Sorting and How to Write Great Copy for the Web Brian Suda · Designing with Data Chui Chui Tan · International User Research Andrew Travers · Interviewing for Research 2013 Owen Gregory owengregory 2013-12-15T00:00:00+00:00 https://24ways.org/2013/web-books/ content
24 Kill It With Fire! What To Do With Those Dreaded FAQs In the mid-1640s, a man named Matthew Hopkins attempted to rid England of the devil’s influence, primarily by demanding payment for the service of tying women to chairs and tossing them into lakes. Unsurprisingly, his methods garnered criticism. Hopkins defended himself in The Discovery of Witches in 1647, subtitled “Certaine Queries answered, which have been and are likely to be objected against MATTHEW HOPKINS, in his way of finding out Witches.” Each “querie” was written in the voice of an imagined detractor, and answered in the voice of an imagined defender (always referring to himself as “the discoverer,” or “him”): Quer. 14. All that the witch-finder doth is to fleece the country of their money, and therefore rides and goes to townes to have imployment, and promiseth them faire promises, and it may be doth nothing for it, and possesseth many men that they have so many wizzards and so many witches in their towne, and so hartens them on to entertaine him. Ans. You doe him a great deale of wrong in every of these particulars. Hopkins’ self-defense was an early modern English FAQ. Digital beginnings Question and answer formatting certainly isn’t new, and stretches back much further than witch-hunt days. But its most modern, most notorious, most reviled incarnation is the internet’s frequently asked questions page. FAQs began showing up on pre-internet mailing lists as a way for list members to answer and pre-empt newcomers’ repetitive questions: The presumption was that new users would download archived past messages through ftp. In practice, this rarely happened and the users tended to post questions to the mailing list instead of searching its archives. Repeating the “right” answers becomes tedious… When all the users of a system can hear all the other users, FAQs make a lot of sense: the conversation needs to be managed and manageable. FAQs were a stopgap for the technological limitations of the time. But the internet moved past mailing lists. Online information can be stored, searched, filtered, and muted; we choose and control our conversations. New users no longer rely on the established community to answer their questions for them. And yet, FAQs are still around. They’re a content anti-pattern, replicated from site to site to solve a problem we no longer have. What we hate when we hate FAQs As someone who creates and structures online content – always with the goal of making that content as useful as possible to people – FAQs drive me absolutely batty. Almost universally, FAQs represent the opposite of useful. A brief list of their sins: Double trouble Duplicated content is practically a given with FAQs. They’re written as though they’ll be accessed in a vacuum – but search results, navigation patterns, and curiosity ensure that users will seek answers throughout the site. Is our goal to split their focus? To make them uncertain of where to look? To divert them to an isolated microcosm of the website? Duplicated content means user confusion (to say nothing of the duplicated workload for maintaining content). Leaving the job unfinished Many FAQs fail before they’re even out of the gate, presenting a list of questions that’s incomplete (too short and careless to be helpful) or irrelevant (avoiding users’ real concerns in favor of soundbites). Alternately, if the right questions are there, the answers may be convoluted, jargon-heavy, or otherwise difficult to understand. Long lists of not-my-question Getting a single answer often means sifting through a haystack of questions. For each potential question, the user must read, comprehend, assess, move on, rinse, repeat. That’s a lot of legwork for little reward – and a lot of opportunity for mistakes. Users may miss their question, or they may fail to recognize a differently worded version of their question, or they may not notice when their sought-after answer appears somewhere they didn’t expect. The ventriloquist act FAQs shift the point of view. While websites speak on behalf of the organization (“our products,” “our services,” “you can call us for assistance,” etc.), FAQs speak as the user – “I can’t find my password” or “How do I sign up?” Both voices are written from the first-person perspective, but speak for different entities, which is disorienting: it breaks the tone and messaging across the website. It’s also presumptuous: why do you get to speak for the user? These all underscore FAQs’ fatal flaw: they are content without context, delivered without regard for the larger experience of the website. You can hear the absurdity in the name itself: if users are asking the same questions so frequently, then there is an obvious gulf between their needs and the site content. (And if not, then we have a labeling problem.) Instead of sending users to a jumble of maybe-it’s-here-maybe-it’s-not questions, the answers to FAQs should be found naturally throughout a website. They are not separated, not isolated, not other. They are the content. To present it otherwise is to create a runaround, and users know it. Jay Martel’s parody, “F.A.Q.s about F.A.Q.s” captures the silliness and frustration of such a system: Q: Why are you so rude? A: For that answer, you would have to consult an F.A.Q.s about F.A.Q.s about F.A.Q.s. But your time might be better served by simply abandoning your search for a magic answer and taking responsibility for your own profound ignorance. FAQs aren’t magic answers. They don’t resolve a content dilemma or even help users. Yet they keep cropping up, defiant, weedy, impossible to eradicate. Where are they all coming from? Blame it on this: writing is hard. When generating content, most of us do whatever it takes to get some words on the screen. And the format of question and answer makes it easy: a reactionary first stab at content development. After all, the point of website content is to answer users’ questions. So this – to give everyone credit – is a really good move. Content creators who think in terms of questions and answers are actually thinking of their users, particularly first-time users, trying to anticipate their needs and write towards them. It’s a good start. But it’s scaffolding: writing that helps you get to the writing you’re supposed to be doing. It supports you while you write your way to the heart of your content. And once you get there, you have to look back and take the scaffolding down. Leaving content in the Q&A format that helped you develop it is missing the point. You’re not there to build scaffolding. You have to see your content in its naked purpose and determine the best method for communicating that purpose – and it usually won’t be what got you there. The goal (to borrow a lesson from content management systems) is to separate the content from its presentation, to let the meaning of the content inform its display. This is, of course, a nice theory. An occasionally necessary evil I have a lot of clients who adore FAQs. They’ve developed their content over a long period of time. They’ve listened to the questions their users are asking. And they’ve answered them all on a page that I simply cannot get them to part with. Which means I’ve had to consider that there may be occasions where an FAQ page is appropriate. As an example: one of my clients is a financial office in a large institution. Because this office manages several third-party systems that serve a range of niche audiences, they had developed FAQs that addressed hyper-specific instances of dysfunction within systems for different users – à la “I’m a financial director and my employee submitted an expense report in such-and-such system and it returned such-and-such error. What do I do?” Yes, this content could be removed from the question format and rewritten. But I’m not sure it would be an improvement. It won’t necessarily resolve concerns about length and searchability, and the different audiences may complicate the delivery. And since the work of rewriting it didn’t fit into the client workflow (small team, no writers, pressed for time), I didn’t recommend the change. I’ve had to make peace with not being to torch all the FAQs on the internet. Some content, like troubleshooting information or complex procedures, may be better in that format. It may be the smartest way for a particular client to handle that particular information. Of course, this has to be determined on a case-by-case basis, taking into account the amount of content, the subject matter, the skill levels of the content creators, the publishing workflow, and the search habits of the users. If you determine that an FAQ page is the only way to go, ask yourself: Is there a better label or more specific term for the page (support, troubleshooting, product concerns, etc.)? Is there way to structure the page, categorize the questions, or otherwise make it easier for users to navigate quickly to the answer they need? Is a question and answer format absolutely the best way to communicate this information? Form follows function Just as a question and answer format isn’t necessarily required to deliver the content, neither is it an inappropriate method in and of itself. Content professionals have developed a knee-jerk reaction: It’s an FAQ page! Quick, burn it! Buuuuurn it! But there’s no inherent evil in questions and answers. Framing content in an interrogatory construct is no more a deal with the devil than subheads and paragraphs, or narrative arcs, or bullet points. Yes, FAQs are riddled with communication snafus. They deserve, more often than not, to be tied to a chair and thrown into a lake. But that wouldn’t fix our content problems. FAQs are a shiny and obvious target for our frustration, but they’re not unique in their flaws. In any format, in any display, in any kind of page, weak content can rear its ugly, poorly written head. It’s not the Q&A that’s to blame, it’s bad content. Content without context will always fail users. That’s the real witch in our midst. 2013 Lisa Maria Martin lisamariamartin 2013-12-08T00:00:00+00:00 https://24ways.org/2013/what-to-do-with-faqs/ content
57 Cooking Up Effective Technical Writing Merry Christmas! May your preparations for this festive season of gluttony be shaping up beautifully. By the time you read this I hope you will have ordered your turkey, eaten twice your weight in Roses/Quality Street (let’s not get into that argument), and your Christmas cake has been baked and is now quietly absorbing regular doses of alcohol. Some of you may be reading this and scoffing Of course! I’ve also made three batches of mince pies, a seasonal chutney and enough gingerbread men to feed the whole street! while others may be laughing Bake? Oh no, I can’t cook to save my life. For beginners, recipes are the step-by-step instructions that hand-hold us through the cooking process, but even as a seasoned expert you’re likely to refer to a recipe at some point. Recipes tell us what we need, what to do with it, in what order, and what the outcome will be. It’s the documentation behind our ideas, and allows us to take the blueprint for a tasty morsel and to share it with others so they can recreate it. In fact, this is a little like the open source documentation and tutorials that we put out there, similarly aiming to guide other developers through our creations. The ‘just’ification of documentation Lately it feels like we’re starting to consider the importance of our words, and the impact they can have on others. Brad Frost warned us of the dangers of “Just” when it comes to offering up solutions to queries: “Just use this software/platform/toolkit/methodology…” “Just” makes me feel like an idiot. “Just” presumes I come from a specific background, studied certain courses in university, am fluent in certain technologies, and have read all the right books, articles, and resources. “Just” is a dangerous word. “Just” by Brad Frost I can really empathise with these sentiments. My relationship with code started out as many good web tales do, with good old HTML, CSS and JavaScript. University years involved some time with Perl, PHP, Java and C. In my first job I worked primarily with ColdFusion, a bit of ActionScript, some classic  ASP and pinch of Java. I’d do a bit of PHP outside work every now and again. .NET came in, but we never really got on, and eventually I started learning some Ruby, Python and Node. It was a broad set of learnings, and I enjoyed the similarities and differences that came with new languages. I don’t develop day in, day out any more, and my interests and work have evolved over the years, away from full-time development and more into architecture and strategy. But I still make things, and I still enjoy learning. I have often found myself bemoaning the lack of tutorials or courses that cater for the middle level – someone who may be learning a new language, but who has enough programming experience under their belt to not need to revise the concepts of how loops or objects work, and is perfectly adept at googling the syntax for getting a substring. I don’t want snippets out of context; I want an understanding of architectural principles, of the strengths and weaknesses, of the type of applications that work well with the language. I’m caught in the place between snoozing off when ‘Using the Instagram API with Ruby’ hand-holds me through what REST is, and feeling like I’m stupid and need to go back to dev school when I can’t get my environment and dependencies set up, let alone work out how I’m meant to get any code to run. It’s seems I’m not alone with this – Erin McKean seems to have been here too: “Some tutorials (especially coding tutorials) like to begin things in media res. Great for a sense of dramatic action, bad for getting to “Step 1” without tears. It can be really discouraging to fire up a fresh terminal window only to be confronted by error message after error message because there were obligatory steps 0.1.0 through 0.9.9 that you didn’t even know about.” “Tips for Learning What You Don’t Know You Don’t Know” by Erin McKean I’m sure you’ve been here too. Many tutorials suffer badly from the fabled ‘how to draw an owl’-itis. It’s the kind of feeling you can easily get when sifting through recipes as well as with code. Far from being the simple instructions that let us just follow along, they too can be a minefield. Fall in too low and you may be skipping over an explanation of what simmering is, or set your sights too high and you may get stuck at the point where you’re trying to sous vide a steak using your bathtub and a Ziploc bag. Don’t be a turkey, use your loaf! My mum is a great cook in my eyes (aren’t all mums?). I love her handcrafted collection of gathered recipes from over the years, including the one below, which is a great example of how something may make complete sense to the writer, but could be impermeable to a reader. Depending on your level of baking knowledge, you may ask: What’s SR flour? What’s a tsp? Should I use salted or unsalted butter? Do I use sticks of cinnamon or ground? Why is chopped chocolate better? How do I cream things? How big should the balls be? How well is “well spaced”? How much leeway do I have for “(ish!!)”? Does the “20” on the other cookie note mean I’ll end up with twenty? At any point, making a wrong call could lead to rubbish cookies, and lead to someone heading down the path of an I can’t cook mentality. You may be able to cook (or follow recipes), but you may not understand the local terms for ingredients, may not be able to acquire something and need to know what kind of substitutes you can use, or may need to actually do some prep before you jump into the main bit. However, if we look at good examples of recipes, I think there’s a lot we can apply when it comes to technical writing on the web. I’ve written before about the benefit of breaking documentation into small, reusable parts, and this will help us, but we can also take it a bit further. Here are my five top tips for better technical writing. 1. Structure and standardise your information Think of the structure of a recipe. We very often have some common elements and they usually follow roughly the same format. We have standards and conventions that allow us to understand very quickly what a recipe is and how it should be used.  Great recipes help their chefs know what they need to get ready in advance, both in terms of buying ingredients and putting together their kit. They then talk through the process, using appropriate language, and without making assumptions that the person can fill in any gaps for themselves; they explain why things are done the way they are. The best recipes may also suggest how you can take what you’ve done and put your own spin on it. For instance, a good recipe for the simple act of boiling an egg will explain cooking time in relation to your preference for yolk gooiness. There are also different flavour combinations to try, accompaniments, or presentation suggestions.  By breaking down your technical writing into similar sections, you can help your audience understand the elements they’ll be working with, what they need to do once they have these, and how they can move on from your self-contained illustration. Title Ensure your title is suitably descriptive and representative of the result. Getting Started with Python perhaps isn’t as helpful as Learn Python: General Syntax and Basics. Result Many recipes include a couple of lines as an overview of what you’ll end up with, and many include a photo of the finished dish. With our technical writing we can do the same: In this tutorial we’re going to learn how to set up our development environment, and we’ll then undertake some exercises to explore the general syntax, finishing by building a mini calculator. Ingredients What are the components we’ll be working with, whether in terms of versions, environment, languages or the software packages and libraries you’ll need along the way? Listing these up front gives the reader a great summary of the things they’ll be using, and any gotchas. Being able to provide a small amount of supporting information will also help less experienced users. Ideally, explain briefly what things are and why we’re using it. Prep As we heard from Erin above, not fully understanding the prep needed can be a huge source of frustration. Attempting to run a code snippet without context will often lead to failure when the prerequisites and process aren’t clear. Be sure to include information around any environment set-up, installation or config you’ll need to have done before you start. Stu Robson’s Simple Sass documentation aims to do this before getting into specifics, although ideally this would also include setting up Sass itself. Instructions The body of the tutorial itself is the whole point of our writing. The next four tips will hopefully make your tutorial much more successful. Variations Like our ingredients section, as important as explaining why we’re using something in this context is, it’s also great to explain alternatives that could be used instead, and the impact of doing so. Perhaps go a step further, explaining ways that people can change what you have done in your tutorial/readme for use in different situations, or to provide further reading around next steps. What happens if they want to change your static array of demo data to use JSON, for instance? By giving some thought to follow-up questions, you can better support your readers. While not in a separate section, the source code for GreenSock’s GSAP JS basics explains: We’ll use a window.onload for simplicity, but typically it is best to use either jQuery’s $(document).ready() or $(window).load() or cross-browser event listeners so that you’re not limited to one. Keep in mind to both: Explain what variations are possible. Explain why certain options may be more desirable than others in different situations. 2. Small, reusable components Reusable components are for life, not just for Christmas, and they’re certainly not just for development. If you start to apply the structure above to your writing, you’re probably going to keep coming across the same elements: Do I really have to explain how to install Sass and Node.js again, Sally? The danger with more clarity is that our writing becomes bloated and overly convoluted for advanced readers, those who don’t need to be told how to beat an egg for the hundredth time.  Instead, by making our writing reusable and modular, and by creating smaller, central resources, we can provide context and extra detail where needed without diluting our core message. These could be references we create, or those already created well by others. This recipe for katsudon makes use of this concept. Rather than explaining how to make tonkatsu or dashi stock, these each have their own page. Once familiar, more advanced readers will likely skip over the instructions for the component parts. 3. Provide context to aid accessibility Here I’m talking about accessibility in the broadest sense. Small, isolated snippets can be frustrating to those who don’t fully understand the wider context of how our examples work. Showing an exciting standalone JavaScript function is great, but giving someone the full picture of how and when this is called, and how it should be included in relation to other HTML and CSS is even better. Giving your readers the ability to view a big picture version, and ideally the ability to download a full version of the source, will help to reduce some of the frustrations of trying to get your component to work in their set-up.  4. Be your own tech editor A good editor can be invaluable to your work, and wherever possible I’d recommend that you try to get a neutral party to read over your writing. This may not always be possible, though, and you may need to rely on yourself to cast a critical eye over your work. There are many tips out there around general editing, including printing out your work onto paper, or changing the font size: both will force your eyes to review it in a new light. Beyond this, I’d like to encourage you to think about the following: Explain what things are. For example, instead of referencing Grunt, in the first instance perhaps reference “Grunt (a JavaScript task runner that minimises repetitive activities through automation).” Explain how you get things, even if this is a link to official installers and documentation. Don’t leave your readers having to search. Why are you using this approach/technology over other options? What happens if I use something else? What depends on this? Avoid exclusionary lingo or acronyms. Airbnb’s JavaScript Style Guide includes useful pointers around their reasoning: Use computed property names when creating objects with dynamic property names. Why? They allow you to define all the properties of an object in one place. The language we use often makes assumptions, as we saw with “just”. An article titled “ES6 for Beginners” is hugely ambiguous: is this truly for beginner coders, or actually for people who have a good pre-existing understanding of JavaScript but are new to these features? Review your writing with different types of readers in mind. How might you confuse or mislead them? How can you better answer their questions? This doesn’t necessarily mean supporting everyone – your audience may need to have advanced skills – but even if you’re providing low-level, deep-dive, reference material, trying not to make assumptions or take shortcuts will hopefully lead to better, clearer writing. 5. A picture is worth a thousand words… …or even better: use a thousand pictures, stitched together into a quick video or animated GIF. People learn in different ways. Just as recipes often provide visual references or a video to work along with, providing your technical information with alternative demonstrations can really help get your point across. Your audience will be able to see exactly what you’re doing, what they should expect as interaction responses, and what the process looks like at different points. There are many, many options for recording your screen, including QuickTime Player on Mac OS X (File → New Screen Recording), GifGrabber, or Giffing Tool on Windows. Paul Swain, a UX designer, uses GIFs to provide additional context within his documentation, improving communication: “My colleagues (from across the organisation) love animated GIFs. Any time an interaction is referenced, it’s accompanied by a GIF and a shared understanding of what’s being designed. The humble GIF is worth so much more than a thousand words; and it’s great for cats.” Paul Swain Next time you’re cooking up some instructions for readers, think back to what we can learn from recipes to help make your writing as accessible as possible. Use structure, provide reusable bitesize morsels, give some context, edit wisely, and don’t scrimp on the GIFs. And above all, have a great Christmas! 2015 Sally Jenkinson sallyjenkinson 2015-12-18T00:00:00+00:00 https://24ways.org/2015/cooking-up-effective-technical-writing/ content
227 A Contentmas Epiphany The twelve days of Christmas fall between 25 December, Christmas Day, and 6 January, the Epiphany of the Kings. Traditionally, these have been holidays and a lot of us still take a good proportion of these days off. Equally, a lot of us have a got a personal site kicking around somewhere that we sigh over and think, “One day I’ll sort you out!” Why not take this downtime to give it a big ol’ refresh? I know, good idea, huh? HEY WAIT! WOAH! NO-ONE’S TOUCHING PHOTOSHOP OR DOING ANY CSS FANCYWORK UNTIL I’M DONE WITH YOU! Be honest, did you immediately think of a sketch or mockup you have tucked away? Or some clever little piece of code you want to fiddle with? Now ask yourself, why would you start designing the container if you haven’t worked out what you need to put inside? Anyway, forget the content strategy lecture; I haven’t given you your gifts yet. I present The Twelve Days of Contentmas! This is a simple little plan to make sure that your personal site, blog or portfolio is not just looking good at the end of these twelve days, but is also a really useful repository of really useful content. WARNING KLAXON: There are twelve parts, one for each day of Christmas, so this is a lengthy article. I’m not expecting anyone to absorb this in one go. Add to Instapaper. There is no TL;DR for this because it’s a multipart process, m’kay? Even so, this plan of mine cuts corners on a proper applied strategy for content. You might find some aspects take longer than the arbitrary day I’ve assigned. And if you apply this to your company-wide intranet, I won’t be held responsible for the mess. That said, I encourage you to play along and sample some of the practical aspects of organising existing content and planning new content because it is, honestly, an inspiring and liberating process. For one thing, you get to review all the stuff you have put out for the world to look at and see what you could do next. This always leaves me full of ideas on how to plug the gaps I’ve found, so I hope you are similarly motivated come day twelve. Let’s get to it then, shall we? On the first day of Contentmas, Relly gave to me: 1. A (partial) content inventory I’m afraid being a site owner isn’t without its chores. With great power comes great responsibility and all that. There are the domain renewing, hosting helpline calls and, of course, keeping on top of all the content that you have published. If you just frowned a little and thought, “Well, there’s articles and images and… stuff”, then I’d like to introduce you to the idea of a content inventory. A content inventory is a list of all your content, in a simple spreadsheet, that allows you to see at a glance what is currently on your site: articles; about me page; contact form, and so on. You add the full URL so that you can click directly to any page listed. You add a brief description of what it is and what tags it has. In fact, I’ll show you. I’ve made a Google Docs template for you. Sorry, it isn’t wrapped. Does it seem like a mammoth task? Don’t feel you have to do this all in one day. But do do it. For one thing, looking back at all the stuff you’ve pushed out into the world gives you a warm fuzzy feeling which keeps the heating bill down. Grab a glass of mulled cider and try going month-by-month through your blog archives, or project-by-project through your portfolio. Do a little bit each day for the next twelve days and you’ll have done something awesome. The best bit is that this exploration of your current content helps you with the next day’s task. Bonus gift: for more on content auditing and inventory, check out Jeff Veen’s article on just this topic, which is also suitable for bigger business sites too. On the second day of Contentmas, Relly gave to me: 2. Website loves Remember when you were a kid, you’d write to Santa with a wish list that would make your parents squirm, because your biggest hope for your stocking would be either impossible or impossibly expensive. Do you ever get the same thing now as a grown-up where you think, “Wouldn’t it be great if I could make a video blog every week”, or “I could podcast once a month about this”, and then you push it to the back of your mind, assuming that you won’t have time or you wouldn’t know what to talk about anyway? True fact: content doesn’t just have to be produced when we are so incensed that we absolutely must blog about a topic. Neither does it have to be a drain to a demanding schedule. You can plan for it. In fact, you’re about to. So, today, get a pen and a notebook. Move away from your computer. My gift to you is to grab a quiet ten minutes between turkey sandwiches and relatives visiting and give your site some of the attention it deserves for 2011. What would you do with your site if you could? I don’t mean what would you do purely visually – although by all means note those things down too – but to your site as a whole. Here are some jumping off points: Would you like to individually illustrate and design some of your articles? What about a monthly exploration of your favourite topic through video or audio? Who would you like to collaborate with? What do you want your site to be like for a user? What tone of voice would you like to use? How could you use imagery and typography to support your content? What would you like to create content about in the new year? It’s okay if you can’t do these things yet. It’s okay to scrub out anything where you think, “Nah, never gonna happen.” But do give some thought to what you might want to do next. The best inspiration for this comes from what you’ve already done, so keep on with that inventory. Bonus gift: a Think Vitamin article on podcasting using Skype, so you can rope in a few friends to join in, too. On the third day of Contentmas, Relly gave to me: 3. Red pens Shock news, just in: the web is not print! One of the hardest things as a writer is to reach the point where you say, “Yeah, okay, that’s it. I’m done” and send off your beloved manuscript or article to print. I’m convinced that if deadlines didn’t exist, nothing would get finished. Why? Well, at the point you hand it over to the publishing presses, you can make no more changes. At best, you can print an erratum or produce an updated second edition at a later date. And writers love to – no, they live to – tweak their creations, so handing them over is quite a struggle. Just one more comma and… Online, we have no such constraints. We can edit, correct, test, tweak, twiddle until we’re blooming sick of it. Our red pens never run out of ink. It is time for you to run a more critical eye over your content, especially the stuff already published. Relish in the opportunity to change stuff on the fly. I am not so concerned by blog articles and such (although feel free to apply this concept to those, too), but mainly by your more concrete content: about pages; contact pages; home page navigation; portfolio pages; 404 pages. Now, don’t go running amok with the cut function yet. First, put all these evergreen pages into your inventory. In the notes section, write a quick analysis of how useful this copy is. Example questions: Is your contact page up-to-date? Does your about page link to the right places? Is your portfolio current? Does your 404 page give people a way to find what they were looking for? We’ll come back to this in a few days once we have a clearer idea of how to improve our content. Bonus gift: the audio and slides of a talk I gave on microcopy and 404 pages at @media WebDirections last year. On the fourth day of Contentmas, Relly gave to me: 4. Stalling nerds Actually, I guess more accurately this is something I get given a lot. Designers and developers particularly can find a million ways to extract themselves from the content of a site but, as the site owner, and this being your personal playground and all, you mustn’t. You actually can’t, sorry. But I do understand that at this point, ‘sorting out your site’ suddenly seems a lot less exciting, especially if you are a visually-minded person and words and lists aren’t really your thing. So far, there has been a lot of not-very-exciting exercises in planning, and there’s probably a nice pile of DVDs and video games that you got from Santa worth investigating. Stay strong my friend. By now, you have probably hit upon an idea of some sort you are itching to start on, so for every half-hour you spend doing inventory, gift yourself another thirty minutes to play with that idea. Bonus gift: the Pomodoro Technique. Take one kitchen timer and a to-do list and see how far you can go. On the fifth day of Contentmas, Relly gave to me: 5. Golden rules Here are some guidelines for writing online: Make headlines for tutorials and similar content useful and descriptive; use a subheading for any terrible pun you want to work in. Create a broad opening paragraph that addresses what your article is about. Part of the creative skill in writing is to do this in a way that both informs the reader and captures their attention. If you struggle with this, consider a boxout giving a summary of the article. Use headings to break up chunks of text and allow people to scan. Most people will have a scoot about an article before starting at the beginning to give it a proper read. These headings should be equal parts informative and enticing. Try them out as questions that might be posed by the reader too. Finish articles by asking your reader to take an affirmative action: subscribe to your RSS feed; leave a comment (if comments are your thing – more on that later); follow you on Twitter; link you to somewhere they have used your tutorial or code. The web is about getting excited, making things and sharing with others, so give your readers the chance to do that. For portfolio sites, this call to action is extra important as you want to pick up new business. Encourage people to e-mail you or call you – don’t just rely on a number in the footer or an e-mail link at the top. Think up some consistent calls-to-action you can use and test them out. So, my gift to you today is a simplified page table for planning out your content to make it as useful as possible. Feel free to write a new article or tutorial, or work on that great idea from yesterday and try out these guidelines for yourself. It’s a simple framework – good headline; broad opening; headings to break up volume; strong call to action – but it will help you recognise if what you’ve written is in good shape to face the world. It doesn’t tell you anything about how to create it – that’s your endeavour – but it does give you a start. No more staring at a blank page. Bonus gift: okay, you have to buy yourself this one, but it is the gift that keeps on giving: Ginny Reddish’s Letting Go of the Words – the hands down best guide to web writing there is, with a ton of illustrative examples. On the sixth day of Contentmas, Relly gave to me: 6. Foundation-a-laying Yesterday, we played with a page table for articles. Today, we are going to set the foundations for your new, spangly, spruced up, relaunched site (for when you’re ready, of course). We’ve checked out what we’ve got, we’ve thought about what we’d like, we have a wish list for the future. Now is the time for a small reality check. Be realistic with yourself. Can you really give your site some attention every day? Record a short snippet of audio once a week? A photo diary post once a month? Look back at the wish list you made. What can you do? What can you aim for? What just isn’t possible right now? As much as we’d all love to be producing a slick video podcast and screencast three times a week, it’s better to set realistic expectations and work your way up. Where does your site sit in your online world? Do you want it to be the hub of all your social interactions, a lifestream, a considered place of publication or a free for all? Do you want to have comments (do you have the personal resource to monitor comments?) or would you prefer conversation to happen via Twitter, Facebook or not at all? Does this apply to all pages, posts and content types or just some? Get these things straight in your head and it’s easier to know what sort of environment you want to create and what content you’ll need to sustain it. Get your notebook again and think about specific topics you’d like to cover, or aspects of a project you want to go into more, and how you can go ahead and do just that. A good motivator is to think what you’ll get out of doing it, even if that is “And I’ll finally show the poxy $whatever_community that my $chosen_format is better than their $other_format.” What topics have you really wanted to get off your chest? Look through your inventory again. What gaps are there in your content just begging to be filled? Today, you’re going to give everyone the gift of your opinion. Find one of those things where someone on the internet is wrong and create a short but snappy piece to set them straight. Doesn’t that feel good? Soon you’ll be able to do this in a timely manner every time someone is wrong on the internet! Bonus gift: we’re halfway through, so I think something fun is in order. How about a man sledding naked down a hill in Brighton on a tea tray? Sometimes, even with a whole ton of content planning, it’s the spontaneous stuff that is still the most fun to share. On the seventh day of Contentmas, Relly gave to me: 7. Styles-a-guiding Not colour style guides or brand style guides or code style guides. Content style guides. You could go completely to town and write yourself a full document defining every aspect of your site’s voice and personality, plus declaring your view on contracted phrases and the Oxford comma, but this does seem a tad excessive. Unless you’re writing an entire site as a fictional character, you probably know your own voice and vocabulary better than anyone. It’s in your head, after all. Instead, equip yourself with a good global style guide (I like the Chicago Manual of Style because I can access it fully online, but the Associated Press (AP) Stylebook has a nifty iPhone app and, if I’m entirely honest, I’ve found a copy of Eats, Shoots and Leaves has set me right on all but the most technical aspects of punctuation). Next, pick a good dictionary and bookmark thesaurus.com. Then have a go at Kristina Halvorson’s ‘Voice and Tone’ exercise from her book Content Strategy for the Web, to nail down what you’d like your future content to be like: To introduce the voice and tone qualities you’re [looking to create], a good approach is to offer contrasting values. For example: Professional, not academic. Confident, not arrogant. Clever, not cutesy. Savvy, not hipster. Expert, not preachy. Take a look around some of your favourite sites and examine the writing and stylistic handling of content. What do you like? What do you want to emulate? What matches your values list? Today’s gift to you is an idea. Create a ‘swipe file’ through Evernote or Delicious and save all the stuff you come across that, regardless of topic, makes you think, “That’s really cool.” This isn’t the same as an Instapaper list you’d like to read. This is stuff you have read or have seen that is worth looking at in closer detail. Why is it so good? What is the language and style like? What impact does the typography have? How does the imagery work to enhance the message? This isn’t about creating a personal brand or any such piffle. It’s about learning to recognise how good content works and how to create something awesome yourself. Obviously, your ideas are brilliant, so take the time to understand how best to spring them on the unsuspecting public for easier world domination. Bonus gift: a nifty style guide is a must when you do have to share content creation duties with others. Here is Leeds University’s publicly available PDF version for you to take a gander at. I especially like the Rationale sections for chopping off dissenters at the knees. On the eighth day of Contentmas, Relly gave to me: 8. Times-a-making You have an actual, real plan for what you’d like to do with your site and how it is going to sound (and probably some ideas on how it’s going to look, too). I hope you are full of enthusiasm and Getting Excited To Make Things. Just before we get going and do exactly that, we are going to make sure we have made time for this creative outpouring. Have you tried to blog once a week before and found yourself losing traction after a month or two? Are there a couple of podcasts lurking neglected in your archives? Whereas half of the act of running is showing up for training, half of creating is making time rather than waiting for it to become urgent. It’s okay to write something and set a date to come back to it (which isn’t the same as leaving it to decompose in your drafts folder). Putting a date in your calendar to do something for your site means that you have a forewarning to think of a topic to write about, and space in your schedule to actually do it. Crucially, you’ve actually made some time for this content lark. To do this, you need to think about how long it takes to get something out of the door/shipped/published/whatever you want to call it. It might take you just thirty minutes to record a podcast, but also a further hour to research the topic beforehand and another hour to edit and upload the clips. Suddenly, doing a thirty minute podcast every day seems a bit unlikely. But, on the flipside, it is easy to see how you could schedule that in three chunks weekly. Put it in your calendar. Do it, publish it, book yourself in for the next week. Keep turning up. Today my gift to you is the gift of time. Set up your own small content calendar, using your favourite calendar system, and schedule time to play with new ways of creating content, time to get it finished and time to get it on your site. Don’t let good stuff go to your drafts folder to die of neglect. Bonus gift: lots of writers swear by the concept of ‘daily pages’. That is, churning out whatever is in your head to see if there is anything worth building upon, or just to lose the grocery list getting in the way. 750words.com is a site built around this concept. Go have a play. On the ninth day of Contentmas, Relly gave to me: 9. Copy enhancing An incredibly radical idea for day number nine. We are going to look at that list of permanent pages you made back on day three and rewrite the words first, before even looking at a colour palette or picking a font! Crazy as it sounds, doing it this way round could influence your design. It could shape the imagery you use. It could affect your choice of typography. IMAGINE THE POSSIBILITIES! Look at the page table from day five. Print out one for each of your homepage, about page, contact page, portfolio, archive, 404 page or whatever else you have. Use these as a place to brainstorm your ideas and what you’d like each page to do for your site. Doodle in the margin, choose words you think sound fun to say, daydream about pictures you’d like to use and colours you think would work, but absolutely, completely and utterly fill in those page tables to understand how much (or how little) content you’re playing with and what you need to do to get to ‘launch’. Then, use them for guidance as you start to write. Don’t skimp. Don’t think that a fancy icon of an envelope encourages people to e-mail you. Use your words. People get antsy at this bit. Writing can be hard work and it’s easy for me to say, “Go on and write it then!” I know this. I mean, you should see the faces I pull when I have to do anything related to coding. The closest equivalent would be when scientists have to stick their hands in big gloves attached to a glass box to do dangerous experiments. Here’s today’s gift, a little something about writing that I hope brings you comfort: To write something fantastic you almost always have to write a rubbish draft first. Now, you might get lucky and write a ‘good enough’ draft first time and that’s fab – you’ve cut some time getting to ‘fantastic’. If, however, you’ve always looked at your first attempt to write more than the bare minimum and sighed in despair, and resigned yourself to adding just a title, date and a screenshot, be cheered because you have taken the first step to being able to communicate with clarity, wit and panache. Keep going. Look at writing you admire and emulate it. Think about how you will lovingly design those words when they are done. Know that you can go back and change them. Check back with your page table to keep you on track. Do that first draft. Bonus gift: becoming a better writer helps you to explain design concepts to clients. On the tenth day of Contentmas, Relly gave to me: 10. Ideas for keeping Hurrah! You have something down on paper, ready to start evolving your site around it. Here’s where the words and visuals and interaction start to come together. Because you have a plan, you can think ahead and do things you wouldn’t be able to pull together otherwise. How about finding a fresh-faced stellar illustrator on Dribbble to create you something perfect to pep up your contact page or visualize your witty statement on statements of work. A List Apart has been doing it for years and it hasn’t worked out too badly for them, has it? What about spending this month creating a series of introductory tutorials on a topic, complete with screencasts and audio and give them a special home on your site? How about putting in some hours creating a glorious about me page, with a biography, nice picture, and where you spend your time online? You could even do the web equivalent of getting up in the attic and sorting out your site’s search to make it easier to find things in your archives. Maybe even do some manual recommendations for relevant content and add them as calls to action. How about writing a few awesome case studies with individual screenshots of your favourite work, and creating a portfolio that plays to your strengths? Don’t just rely on the pretty pictures; use your words. Otherwise no-one understands why things are the way they are on that screenshot and BAM! you’ll be judged on someone else’s tastes. (Elliot has a head start on you for this, so get to it!) Do you have a serious archive of content? What’s it like being a first-time visitor to your site? Could you write them a guide to introduce yourself and some of the most popular stuff on your site? Ali Edwards is a massively popular crafter and every day she gets new visitors who have found her multiple papercraft projects on Flickr, Vimeo and elsewhere, so she created a welcome guide just for them. What about your microcopy? Can you improve on your blogging platform’s defaults for search, comment submission and labels? I’ll bet you can. Maybe you could plan a collaboration with other like-minded souls. A week of posts about the more advanced wonders of HTML5 video. A month-long baton-passing exercise in extolling the virtues of IE (shut up, it could happen!). Just spare me any more online advent calendars. Watch David McCandless’s TED talk on his jawdropping infographic work and make something as awesome as the Billion Dollar O Gram. I dare you. Bonus gift: Grab a copy of Brian Suda’s Designing with Data, in print or PDF if Santa didn’t put one in your stocking, and make that awesome something with some expert guidance. On the eleventh day of Contentmas, Relly gave to me: 11. Pixels pushing Oh, go on then. Make a gorgeous bespoke velvet-lined container for all that lovely content. It’s proper informed design now, not just decoration. Mr. Zeldman says so. Bonus gift: I made you a movie! If books were designed like websites. On the twelfth day of Contentmas, Relly gave to me: 12. Delighters delighting The Epiphany is upon us; your site is now well on its way to being a beautiful, sustainable hub of content and you have a date in your calendar to help you keep that resolution of blogging more. What now? Keep on top of your inventory. One day it will save your butt, I promise. Keep making a little bit of time regularly to create something new: an article; an opinion piece; a small curation of related links; a photo diary; a new case study. That’s easier than an annual content bootcamp for sure. And today’s gift: look for ways to play with that content and make something a bit special. Stretch yourself a little. It’ll be worth it. Bonus gift: Paul Annett’s presentation on Ooh, that’s clever: Delighters in design from SxSW 09. All my favourite designers and developers have their own unique styles and touches. It’s what sets them apart. My very, very favourites have an eloquence and expression that they bring to their sites and to their projects. I absolutely love to explore a well-crafted, well-written site – don’t we all? I know the time it takes. I appreciate the time it takes. But the end results are delicious. Do please share your spangly, refreshed sites with me in the comments. Catch me on Twitter, I’m @RellyAB, and I’ve been your host for these Twelve Days of Contentmas. 2010 Relly Annett-Baker rellyannettbaker 2010-12-21T00:00:00+00:00 https://24ways.org/2010/a-contentmas-epiphany/ content
251 The System, the Search, and the Food Bank Imagine a warehouse, half the length of a football field, with a looped conveyer belt down the center. On the belt are plastic bins filled with assortments of shelf-stable food—one may have two bags of potato chips, seventeen pudding cups, and a box of tissues; the next, a dozen cans of beets. The conveyer belt is ringed with large, empty cardboard boxes, each labeled with categories like “Bottled Water” or “Cereal” or “Candy.” Such was the scene at my local food bank a few Saturdays ago, when some friends and I volunteered for a shift sorting donated food items. Our job was to fill the labeled cardboard boxes with the correct items nabbed from the swiftly moving, randomly stocked plastic bins. I could scarcely believe my good fortune of assignments. You want me to sort things? Into categories? For several hours? And you say there’s an element of time pressure? Listen, is there some sort of permanent position I could be conscripted into. Look, I can’t quite explain it: I just know that I love sorting, organizing, and classifying things—groceries at a food bank, but also my bookshelves, my kitchen cabinets, my craft supplies, my dishwasher arrangement, yes I am a delight to live with, why do you ask? The opportunity to create meaning from nothing is at the core of my excitement, which is why I’ve tried to build a career out of organizing digital content, and why I brought a frankly frightening level of enthusiasm to the food bank. “I can’t believe they’re letting me do this,” I whispered in awe to my conveyer belt neighbor as I snapped up a bag of popcorn for the Snacks box with the kind of ferocity usually associated with birds of prey. The jumble of donated items coming into the center need to be sorted in order for the food bank to be able to quantify, package, and distribute the food to those who need it (I sense a metaphor coming on). It’s not just a nice-to-have that we spent our morning separating cookies from carrots—it’s a crucial step in the process. Organization makes the difference between chaos and sense, between randomness and usefulness, whether we’re talking about donated groceries or—there it is—web content. This happens through the magic of criteria matching. In order for us to sort the food bank donations correctly, we needed to know not only the categories we were sorting into, but also the criteria for each category. Does canned ravioli count as Canned Soup? Does enchilada sauce count as Tomatoes? Do protein bars count as Snacks? (Answers: yes, yes, and only if they are under 10 grams of protein or will expire within three months.) Is X a Y? was the question at the heart of our food sorting—but it’s also at the heart of any information-seeking behavior. When we are organizing, or looking for, any kind of information, we are asking ourselves: What is the criteria that defines Y? Does X meet that criteria? We don’t usually articulate it so concretely because it’s a background process, only leaping to consciousness when we encounter a stumbling block. If cans of broth flew by on the conveyer belt, it didn’t require much thought to place them in the Canned Soup box. Boxed broth, on the other hand, wasn’t allowed, causing a small cognitive hiccup—this X is NOT a Y—that sometimes meant having to re-sort our boxes. On the web, we’re interested—I would hope—in reducing cognitive hiccups for our users. We are interested in making our apps easy to use, our websites easy to navigate, our information easy to access. After all, most of the time, the process of using the internet is one of uniting a question with an answer—Is this article from a trustworthy source? Is this clothing the style I want? Is this company paying their workers a living wage? Is this website one that can answer my question? Is X a Y? We have a responsibility, therefore, to make information easy for our users to find, understand, and act on. This means—well, this means a lot of things, and I’ve got limited space here, so let’s focus on these three lessons from the food bank: Use plain, familiar language. This advice seems to be given constantly, but that’s because it’s solid and it’s not followed enough. Your menu labels, page names, and headings need to reflect the word choice of your users. Think how much harder it would have been to sort food if the boxes were labeled according to nutritional content, grocery store aisle number, or Latin name. How much would it slow sorting down if the Tomatoes box were labeled Nightshades? It sounds silly, but it’s not that different from sites that use industry jargon, company lingo, acronyms (oh, yes, I’ve seen it), or other internally focused language when trying to provide wayfinding for users. Choose words that your audience knows—not only will they be more likely to spot what they’re looking for on your site or app, but you’ll turn up more often in search results. Create consistency in all things. Missteps in consistency look like my earlier chicken broth example—changing up how something looks, sounds, or functions creates a moment of cognitive dissonance, and those moments add up. The names of products, the names of brands, the names of files and forms and pages, the names of processes and procedures and concepts—these all need to be consistently spelled, punctuated, linked, and referenced, no matter what section or level the user is in. If submenus are visible in one section, they should be visible in all. If calls-to-action are a graphic button in one section, they are the same graphic button in all. Every affordance, every module, every design choice sets up user expectations; consistency keeps those expectations afloat, making for a smoother experience overall. Make the system transparent. By this, I do not mean that every piece of content should be elevated at all times. The horror. But I do mean that we should make an effort to communicate the boundaries of the digital space from any given corner within. Navigation structures operate just as much as a table of contents as they do a method of moving from one place to another. Page hierarchies help explain content relationships, communicating conceptual relevancy and relative importance. Submenus illustrate which related concepts may be found within a given site section. Take care to show information that conveys the depth and breadth of the system, rather than obscuring it. This idea of transparency was perhaps the biggest challenge we experienced in food sorting. Imagine us volunteers as users, each looking for a specific piece of information in the larger system. Like any new visitor to a website, we came into the system not knowing the full picture. We didn’t know every category label around the conveyer belt, nor what criteria each category warranted. The system wasn’t transparent for us, so we had to make it transparent as we went. We had to stop what we were doing and ask questions. We’d ask staff members. We’d ask more seasoned volunteers. We’d ask each other. We’d make guesses, and guess wrongly, and mess up the boxes, and correct our mistakes, and learn. The more we learned, the easier the sorting became. That is, we were able to sort more quickly, more efficiently, more accurately. The better we understood the system, the better we were at interacting with it. The same is true of our users: the better they understand digital spaces, the more effective they are at using them. But visitors to our apps and websites do not have the luxury of learning the whole system. The fumbling trial-and-error method that I used at the food bank can, on a website, drive users away—or, worse, misinform or hurt them. This is why we must make choices that prioritize transparency, consistency, and familiarity. Our users want to know if X is a Y—well-sorted content can give them the answer. 2018 Lisa Maria Martin lisamariamartin 2018-12-16T00:00:00+00:00 https://24ways.org/2018/the-system-the-search-and-the-food-bank/ content
252 Turn Jekyll up to Eleventy Sometimes it pays not to over complicate things. While many of the sites we use on a daily basis require relational databases to manage their content and dynamic pages to respond to user input, for smaller, simpler sites, serving pre-rendered static HTML is usually a much cheaper — and more secure — option. The JAMstack (JavaScript, reusable APIs, and prebuilt Markup) is a popular marketing term for this way of building websites, but in some ways it’s a return to how things were in the early days of the web, before developers started tinkering with CGI scripts or Personal HomePage. Indeed, my website has always served pre-rendered HTML; first with the aid of Movable Type and more recently using Jekyll, which Anna wrote about in 2013. By combining three approachable languages — Markdown for content, YAML for data and Liquid for templating — the ergonomics of Jekyll found broad appeal, influencing the design of the many static site generators that followed. But Jekyll is not without its faults. Aside from notoriously slow build times, it’s also built using Ruby. While this is an elegant programming language, it is yet another ecosystem to understand and manage, and often alongside one we already use: JavaScript. For all my time using Jekyll, I would think to myself “this, but in Node”. Thankfully, one of Santa’s elves (Zach Leatherman) granted my Atwoodian wish and placed such a static site generator under my tree. Introducing Eleventy Eleventy is a more flexible alternative Jekyll. Besides being written in Node, it’s less strict about how to organise files and, in addition to Liquid, supports other templating languages like EJS, Pug, Handlebars and Nunjucks. Best of all, its build times are significantly faster (with future optimisations promising further gains). As content is saved using the familiar combination of YAML front matter and Markdown, transitioning from Jekyll to Eleventy may seem like a reasonable idea. Yet as I’ve discovered, there are a few gotchas. If you’ve been considering making the switch, here are a few tips and tricks to help you on your way1. Note: Throughout this article, I’ll be converting Matt Cone’s Markdown Guide site as an example. If you want to follow along, start by cloning the git repository, and then change into the project directory: git clone https://github.com/mattcone/markdown-guide.git cd markdown-guide Before you start If you’ve used tools like Grunt, Gulp or Webpack, you’ll be familiar with Node.js but, if you’ve been exclusively using Jekyll to compile your assets as well as generate your HTML, now’s the time to install Node.js and set up your project to work with its package manager, NPM: Install Node.js: Mac: If you haven’t already, I recommend installing Homebrew, a package manager for the Mac. Then in the Terminal type brew install node. Windows: Download the Windows installer from the Node.js website and follow the instructions. Initiate NPM: Ensure you are in the directory of your project and then type npm init. This command will ask you a few questions before creating a file called package.json. Like RubyGems’s Gemfile, this file contains a list of your project’s third-party dependencies. If you’re managing your site with Git, make sure to add node_modules to your .gitignore file too. Unlike RubyGems, NPM stores its dependencies alongside your project files. This folder can get quite large, and as it contains binaries compiled to work with the host computer, it shouldn’t be version controlled. Eleventy will also honour the contents of this file, meaning anything you want Git to ignore, Eleventy will ignore too. Installing Eleventy With Node.js installed and your project setup to work with NPM, we can now install Eleventy as a dependency: npm install --save-dev @11ty/eleventy If you open package.json you should see the following: … "devDependencies": { "@11ty/eleventy": "^0.6.0" } … We can now run Eleventy from the command line using NPM’s npx command. For example, to covert the README.md file to HTML, we can run the following: npx eleventy --input=README.md --formats=md This command will generate a rendered HTML file at _site/README/index.html. Like Jekyll, Eleventy shares the same default name for its output directory (_site), a pattern we will see repeatedly during the transition. Configuration Whereas Jekyll uses the declarative YAML syntax for its configuration file, Eleventy uses JavaScript. This allows its options to be scripted, enabling some powerful possibilities as we’ll see later on. We’ll start by creating our configuration file (.eleventy.js), copying the relevant settings in _config.yml over to their equivalent options: module.exports = function(eleventyConfig) { return { dir: { input: "./", // Equivalent to Jekyll's source property output: "./_site" // Equivalent to Jekyll's destination property } }; }; A few other things to bear in mind: Whereas Jekyll allows you to list folders and files to ignore under its exclude property, Eleventy looks for these values inside a file called .eleventyignore (in addition to .gitignore). By default, Eleventy uses markdown-it to parse Markdown. If your content uses advanced syntax features (such as abbreviations, definition lists and footnotes), you’ll need to pass Eleventy an instance of this (or another) Markdown library configured with the relevant options and plugins. Layouts One area Eleventy currently lacks flexibility is the location of layouts, which must reside within the _includes directory (see this issue on GitHub). Wanting to keep our layouts together, we’ll move them from _layouts to _includes/layouts, and then update references to incorporate the layouts sub-folder. We could update the layout: frontmatter property in each of our content files, but another option is to create aliases in Eleventy’s config: module.exports = function(eleventyConfig) { // Aliases are in relation to the _includes folder eleventyConfig.addLayoutAlias('about', 'layouts/about.html'); eleventyConfig.addLayoutAlias('book', 'layouts/book.html'); eleventyConfig.addLayoutAlias('default', 'layouts/default.html'); return { dir: { input: "./", output: "./_site" } }; } Determining which template language to use Eleventy will transform Markdown (.md) files using Liquid by default, but we’ll need to tell Eleventy how to process other files that are using Liquid templates. There are a few ways to achieve this, but the easiest is to use file extensions. In our case, we have some files in our api folder that we want to process with Liquid and output as JSON. By appending the .liquid file extension (i.e. basic-syntax.json becomes basic-syntax.json.liquid), Eleventy will know what to do. Variables On the surface, Jekyll and Eleventy appear broadly similar, but as each models its content and data a little differently, some template variables will need updating. Site variables Alongside build settings, Jekyll let’s you store common values in its configuration file which can be accessed in our templates via the site.* namespace. For example, in our Markdown Guide, we have the following values: title: "Markdown Guide" url: https://www.markdownguide.org baseurl: "" repo: http://github.com/mattcone/markdown-guide comments: false author: name: "Matt Cone" og_locale: "en_US" Eleventy’s configuration uses JavaScript which is not suited to storing values like this. However, like Jekyll, we can use data files to store common values. If we add our site-wide values to a JSON file inside a folder called _data and name this file site.json, we can keep the site.* namespace and leave our variables unchanged. { "title": "Markdown Guide", "url": "https://www.markdownguide.org", "baseurl": "", "repo": "http://github.com/mattcone/markdown-guide", "comments": false, "author": { "name": "Matt Cone" }, "og_locale": "en_US" } Page variables The table below shows a mapping of common page variables. As a rule, frontmatter properties are accessed directly, whereas derived metadata values (things like URLs, dates etc.) get prefixed with the page.* namespace: Jekyll Eleventy page.url page.url page.date page.date page.path page.inputPath page.id page.outputPath page.name page.fileSlug page.content content page.title title page.foobar foobar When iterating through pages, frontmatter values are available via the data object while content is available via templateContent: Jekyll Eleventy item.url item.url item.date item.date item.path item.inputPath item.name item.fileSlug item.id item.outputPath item.content item.templateContent item.title item.data.title item.foobar item.data.foobar Ideally the discrepancy between page and item variables will change in a future version (see this GitHub issue), making it easier to understand the way Eleventy structures its data. Pagination variables Whereas Jekyll’s pagination feature is limited to paginating posts on one page, Eleventy allows you to paginate any collection of documents or data. Given this disparity, the changes to pagination are more significant, but this table shows a mapping of equivalent variables: Jekyll Eleventy paginator.page pagination.pageNumber paginator.per_page pagination.size paginator.posts pagination.items paginator.previous_page_path pagination.previousPageHref paginator.next_page_path pagination.nextPageHref Filters Although Jekyll uses Liquid, it provides a set of filters that are not part of the core Liquid library. There are quite a few — more than can be covered by this article — but you can replicate them by using Eleventy’s addFilter configuration option. Let’s convert two used by our Markdown Guide: jsonify and where. The jsonify filter outputs an object or string as valid JSON. As JavaScript provides a native JSON method, we can use this in our replacement filter. addFilter takes two arguments; the first is the name of the filter and the second is the function to which we will pass the content we want to transform: // {{ variable | jsonify }} eleventyConfig.addFilter('jsonify', function (variable) { return JSON.stringify(variable); }); Jekyll’s where filter is a little more complicated in that it takes two additional arguments: the key to look for, and the value it should match: {{ site.members | where: "graduation_year","2014" }} To account for this, instead of passing one value to the second argument of addFilter, we can instead pass three: the array we want to examine, the key we want to look for and the value it should match: // {{ array | where: key,value }} eleventyConfig.addFilter('where', function (array, key, value) { return array.filter(item => { const keys = key.split('.'); const reducedKey = keys.reduce((object, key) => { return object[key]; }, item); return (reducedKey === value ? item : false); }); }); There’s quite a bit going on within this filter, but I’ll try to explain. Essentially we’re examining each item in our array, reducing key (passed as a string using dot notation) so that it can be parsed correctly (as an object reference) before comparing its value to value. If it matches, item remains in the returned array, else it’s removed. Phew! Includes As with filters, Jekyll provides a set of tags that aren’t strictly part of Liquid either. This includes one of the most useful, the include tag. LiquidJS, the library Eleventy uses, does provide an include tag, but one using the slightly different syntax defined by Shopify. If you’re not passing variables to your includes, everything should work without modification. Otherwise, note that whereas with Jekyll you would do this: <!-- page.html --> {% include include.html value="key" %} <!-- include.html --> {{ include.value }} in Eleventy, you would do this: <!-- page.html --> {% include "include.html", value: "key" %} <!-- include.html --> {{ value }} A downside of Shopify’s syntax is that variable assignments are no longer scoped to the include and can therefore leak; keep this in mind when converting your templates as you may need to make further adjustments. Tweaking Liquid You may have noticed in the above example that LiquidJS expects the names of included files to be quoted (else it treats them as variables). We could update our templates to add quotes around file names (the recommended approach), but we could also disable this behaviour by setting LiquidJS’s dynamicPartials option to false. Additionally, Eleventy doesn’t support the include_relative tag, meaning you can’t include files relative to the current document. However, LiquidJS does let us define multiple paths to look for included files via its root option. Thankfully, Eleventy allows us to pass options to LiquidJS: eleventyConfig.setLiquidOptions({ dynamicPartials: false, root: [ '_includes', '.' ] }); Collections Jekyll’s collections feature lets authors create arbitrary collections of documents beyond pages and posts. Eleventy provides a similar feature, but in a far more powerful way. Collections in Jekyll In Jekyll, creating collections requires you to add the name of your collections to _config.yml and create corresponding folders in your project. Our Markdown Guide has two collections: collections: - basic-syntax - extended-syntax These correspond to the folders _basic-syntax and _extended-syntax whose content we can iterate over like so: {% for syntax in site.extended-syntax %} {{ syntax.title }} {% endfor %} Collections in Eleventy There are two ways you can set up collections in 11ty. The first, and most straightforward, is to use the tag property in content files: --- title: Strikethrough syntax-id: strikethrough syntax-summary: "~~The world is flat.~~" tag: extended-syntax --- We can then iterate over tagged content like this: {% for syntax in collections.extended-syntax %} {{ syntax.data.title }} {% endfor %} Eleventy also allows us to configure collections programmatically. For example, instead of using tags, we can search for files using a glob pattern (a way of specifying a set of filenames to search for using wildcard characters): eleventyConfig.addCollection('basic-syntax', collection => { return collection.getFilteredByGlob('_basic-syntax/*.md'); }); eleventyConfig.addCollection('extended-syntax', collection => { return collection.getFilteredByGlob('_extended-syntax/*.md'); }); We can extend this further. For example, say we wanted to sort a collection by the display_order property in our document’s frontmatter. We could take the results of collection.getFilteredByGlob and then use JavaScript’s sort method to sort the result: eleventyConfig.addCollection('example', collection => { return collection.getFilteredByGlob('_examples/*.md').sort((a, b) => { return a.data.display_order - b.data.display_order; }); }); Hopefully, this gives you just a hint of what’s possible using this approach. Using directory data to manage defaults By default, Eleventy will maintain the structure of your content files when generating your site. In our case, that means /_basic-syntax/lists.md is generated as /_basic-syntax/lists/index.html. Like Jekyll, we can change where files are saved using the permalink property. For example, if we want the URL for this page to be /basic-syntax/lists.html we can add the following: --- title: Lists syntax-id: lists api: "no" permalink: /basic-syntax/lists.html --- Again, this is probably not something we want to manage on a file-by-file basis but again, Eleventy has features that can help: directory data and permalink variables. For example, to achieve the above for all content stored in the _basic-syntax folder, we can create a JSON file that shares the name of that folder and sits inside it, i.e. _basic-syntax/_basic-syntax.json and set our default values. For permalinks, we can use Liquid templating to construct our desired path: { "layout": "syntax", "tag": "basic-syntax", "permalink": "basic-syntax/{{ title | slug }}.html" } However, Markdown Guide doesn’t publish syntax examples at individual permanent URLs, it merely uses content files to store data. So let’s change things around a little. No longer tied to Jekyll’s rules about where collection folders should be saved and how they should be labelled, we’ll move them into a folder called _content: markdown-guide └── _content ├── basic-syntax ├── extended-syntax ├── getting-started └── _content.json We will also add a directory data file (_content.json) inside this folder. As directory data is applied recursively, setting permalink to false will mean all content in this folder and its children will no longer be published: { "permalink": false } Static files Eleventy only transforms files whose template language it’s familiar with. But often we may have static assets that don’t need converting, but do need copying to the destination directory. For this, we can use pass-through file copy. In our configuration file, we tell Eleventy what folders/files to copy with the addPassthroughCopy option. Then in the return statement, we enable this feature by setting passthroughFileCopy to true: module.exports = function(eleventyConfig) { … // Copy the `assets` directory to the compiled site folder eleventyConfig.addPassthroughCopy('assets'); return { dir: { input: "./", output: "./_site" }, passthroughFileCopy: true }; } Final considerations Assets Unlike Jekyll, Eleventy provides no support for asset compilation or bundling scripts — we have plenty of choices in that department already. If you’ve been using Jekyll to compile Sass files into CSS, or CoffeeScript into Javascript, you will need to research alternative options, options which are beyond the scope of this article, sadly. Publishing to GitHub Pages One of the benefits of Jekyll is its deep integration with GitHub Pages. To publish an Eleventy generated site — or any site not built with Jekyll — to GitHub Pages can be quite involved, but typically involves copying the generated site to the gh-pages branch or including that branch as a submodule. Alternatively, you could use a continuous integration service like Travis or CircleCI and push the generated site to your web server. It’s enough to make your head spin! Perhaps for this reason, a number of specialised static site hosts have emerged such as Netlify and Google Firebase. But remember; you can publish a static site almost anywhere! Going one louder If you’ve been considering making the switch, I hope this brief overview has been helpful. But it also serves as a reminder why it can be prudent to avoid jumping aboard bandwagons. While it’s fun to try new software and emerging technologies, doing so can require a lot of work and compromise. For all of Eleventy’s appeal, it’s only a year old so has little in the way of an ecosystem of plugins or themes. It also only has one maintainer. Jekyll on the other hand is a mature project with a large community of maintainers and contributors supporting it. I moved my site to Eleventy because the slowness and inflexibility of Jekyll was preventing me from doing the things I wanted to do. But I also had time to invest in the transition. After reading this guide, and considering the specific requirements of your project, you may decide to stick with Jekyll, especially if the output will essentially stay the same. And that’s perfectly fine! But these go to 11. Information provided is correct as of Eleventy v0.6.0 and Jekyll v3.8.5 ↩ 2018 Paul Lloyd paulrobertlloyd 2018-12-11T00:00:00+00:00 https://24ways.org/2018/turn-jekyll-up-to-eleventy/ content
275 Context First: Web Strategy in Four Handy Ws Many, many years ago, before web design became my proper job, I trained and worked as a journalist. I studied publishing in London and spent three fun years learning how to take a few little nuggets of information and turn them into a story. I learned a bunch of stuff that has all been a huge help to my design career. Flatplanning, layout, typographic theory. All of these disciplines have since translated really well to web design, but without doubt the most useful thing I learned was how to ask difficult questions. Pretty much from day one of journalism school they hammer into you the importance of the Five Ws. Five disarmingly simple lines of enquiry that eloquently manage to provide the meat of any decent story. And with alliteration thrown in too. For a young journo, it’s almost too good to be true. Who? What? Where? When? Why? It seems so obvious to almost be trite but, fundamentally, any story that manages to answer those questions for the reader is doing a pretty good job. You’ll probably have noticed feeling underwhelmed by certain news pieces in the past – disappointed, like something was missing. Some irritating oversight that really lets the story down. No doubt it was one of the Ws – those innocuous little suckers are generally only noticeable by their absence, but they sure get missed when they’re not there. Question everything I’ve always been curious. An inveterate tinkerer with things and asker of dopey questions, often to the point of abject annoyance for anyone unfortunate enough to have ended up in my line of fire. So, naturally, the Five Ws started drifting into other areas of my life. I’d scrutinize everything, trying to justify or explain my rationale using these Ws, but I’d also find myself ripping apart the stuff that clearly couldn’t justify itself against the same criteria. So when I started working as a designer I applied the same logic and, sure enough, the Ws pretty much mapped to the exact same needs we had for gathering requirements at the start of a project. It seemed so obvious, such a simple way to establish the purpose of a product. What was it for? Why we were making it? And, of course, who were we making it for? It forced clients to stop and think, when really what they wanted was to get going and see something shiny. Sometimes that was a tricky conversation to have, but it’s no coincidence that those who got it also understood the value of strategy and went on to have good solid products, while those that didn’t often ended up with arrogantly insular and very shiny but ultimately unsatisfying and expendable products. Empty vessels make the most noise and all that… Content first I was both surprised and pleased when the whole content first idea started to rear its head a couple of years back. Pleased, because without doubt it’s absolutely the right way to work. And surprised, because personally it’s always been the way I’ve done it – I wasn’t aware there was even an alternative way. Content in some form or another is the whole reason we were making the things we were making. I can’t even imagine how you’d start figuring out what a site needs to do, how it should be structured, or how it should look without a really good idea of what that content might be. It baffles me still that this was somehow news to a lot of people. What on earth were they doing? Design without purpose is just folly, surely? It’s great to see the idea gaining momentum but, having watched it unfold, it occurred to me recently that although it’s fantastic to see a tangible shift in thinking – away from those bleak times, where making things up was somehow deemed an appropriate way to do things – there’s now a new bad guy in town. With any buzzword solution of the moment, there’s always a catch, and it seems like some have taken the content first approach a little too literally. By which I mean, it’s literally the first thing they do. The project starts, there’s a very cursory nod towards gathering requirements, and off they go, cranking content. Writing copy, making video, commissioning illustrations. All that’s happened is that the ‘making stuff up’ part has shifted along the line, away from layout and UI, back to the content. Starting is too easy I can’t remember where I first heard that phrase, but it’s a great sentiment which applies to so much of what we do on the web. The medium is so accessible and to an extent disposable; throwing things together quickly carries far less burden than in any other industry. We’re used to tweaking as we go, changing bits, iterating things into shape. The ubiquitous beta tag has become the ultimate caveat, and has made the unfinished and unpolished acceptable. Of course, that can work brilliantly in some circumstances. Occasionally, a product offers such a paradigm shift it’s beyond the level of deep planning and prelaunch finessing we’d ideally like. But, in the main, for most client sites we work on, there really is no excuse not to do things properly. To ask the tricky questions, to challenge preconceptions and really understand the Ws behind the products we’re making before we even start. The four Ws For product definition, only four of the five Ws really apply, although there’s a lot of discussion around the idea of when being an influencing factor. For example, the context of a user’s engagement with your product is something you can make a call on depending on the specifics of the project. So, here’s my take on the four essential Ws. I’ll point out here that, of course, these are not intended to be autocratic dictums. Your needs may differ, your clients’ needs may differ, but these four starting points will get you pretty close to where you need to be. Who It’s surprising just how many projects start without a real understanding of the intended audience. Many clients think they have an idea, but without really knowing – it’s presumptive at best, and we all know what presumption is the mother of, right? Of course, we can’t know our audiences in the same way a small shop owner might know their customers. But we can at least strive to find out what type of people are likely to be using the product. I’m not talking about deep user research. That should come later. These are the absolute basics. What’s the context for their visit? How informed are they? What’s their level of comprehension? Are they able to self-identify and relate to categories you have created? I could go on, and it changes on a per-project basis. You’ll only find this out by speaking to them, if not in person, then indirectly through surveys, questionnaires or polls. The mechanism is less important than actually reaching out and engaging with them, because without that understanding it’s impossible to start to design with any empathy. What Once you become deeply involved directly with a product or service, it’s notoriously difficult to see things as an outsider would. You learn the thing inside and out, you develop shortcuts and internal phraseology. Colloquialisms creep in. You become too close. So it’s no surprise when clients sometimes struggle to explain what it is their product actually does in a way that others can understand. Often products are complex but, really, the core reasons behind someone wanting to use that product are very simple. There’s a value proposition for the customer and, if they choose to engage with it, there’s a value exchange. If that proposition or exchange isn’t transparent, then people become confused and will likely go elsewhere. Make sure both your client and you really understand what that proposition is and, in turn, what the expected exchange should be. In a nutshell: what is the intended outcome of that engagement? Often the best way to do this is strip everything back to nothing. Verbosity is rife on the web. Just because it’s easy to create content, that shouldn’t be a reason to do so. Figure out what the value proposition is and then reintroduce content elements that genuinely help explain or present that to a level that is appropriate for the audience. Why In advertising, they talk about the truths behind a product or service. Truths can be both tangible or abstract, but the most important part is the resonance those truths hit with a customer. In a digital product or service those truths are often exposed as benefits. Why is this what I need? Why will it work for me? Why should I trust you? The why is one of the more fluffy Ws, yet it’s such an important one to nail. Clients can get prickly when you ask them to justify the why behind their product, but it’s a fantastic way to make sure the value proposition is clear, realistic and meets with the expectations of both client and customer. It’s our job as designers to question things: we’re not just a pair of hands for clients. Just recently I spoke to a potential client about a site for his business. I asked him why people would use his product and also why his product seemed so fractured in its direction. He couldnt answer that question so, instead of ploughing on regardless, he went back to his directors and is now re-evaluating that business. It was awkward but he thanked me and hopefully he’ll have a better product as a result. Where In this instance, where is not so much a geographical thing, although in some cases that level of context may indeed become a influencing factor… The where we’re talking about here is the position of the product in relation to others around it. By looking at competitors or similar services around the one you are designing, you can start to get a sense for many of the things that are otherwise hard to pin down or have yet to be defined. For example, in a collection of sites all selling cars, where does yours fit most closely? Where are the overlaps? How are they communicating to their customers? How is the product range presented or categorized? It’s good to look around and see how others are doing it. Not in a quest for homogeneity but more to reference or to avoid certain patterns that may or may not make sense for your own particular product. Clients often strive to be different for the sake of it. They feel they need to provide distinction by going against the flow a bit. We know different. We know users love convention. They embrace familiar mental models. They’re comfortable with things that they’ve experienced elsewhere. By showing your client that position is a vital part of their strategy, you can help shape their product into something great. To conclude So there we have it – the four Ws. Each part tells a different and vital part of the story you need to be able to make a really good product. It might sound like a lot of work, particularly when the client is breathing down your neck expecting to see things, but without those pieces in place, the story you’re building your product on, and the content that you’re creating to form that product can only ever fit into one genre. Fiction. 2011 Alex Morris alexmorris 2011-12-10T00:00:00+00:00 https://24ways.org/2011/context-first/ content
287 Extracting the Content As we throw away our canvas in approaches and yearn for a content-out process, there remains a pain point: the Content. It is spoken of in the hushed tones usually reserved for Lord Voldemort. The-thing-that-someone-else-is-responsible-for-that-must-not-be-named. Designers and developers have been burned before by not knowing what the Content is, how long it is, what style it is and when the hell it’s actually going to be delivered, in internet eons past. Warily, they ask clients for it. But clients don’t know what to make, or what is good, because no one taught them this in business school. Designers struggle to describe what they need and when, so the conversation gets put off until it’s almost too late, and then everyone is relieved that they can take the cop-out of putting up a blog and maybe some product descriptions from the brochure. The Content in content out. I’m guessing, as a smart, sophisticated, and, may I say, nicely-scented reader of the honourable and venerable tradition of 24 ways, that you sense something better is out there. Bunches of boxes to fill in just don’t cut it any more in a responsive web design world. The first question is, how are you going to design something to ensure users have the easiest access to the best Content, if you haven’t defined at the beginning what that Content is? Of course, it’s more than possible that your clients have done lots of user research before approaching you to start this project, and have a plethora of finely tuned Content for you to design with. Have you finished laughing yet? Alright then. Let’s just assume that, for whatever reason of gross oversight, this hasn’t happened. What next? Bringing up Content for the first time with a client is like discussing contraception when you’re in a new relationship. It might be awkward and either party would probably rather be doing something else, but it needs to be broached before any action happens (that, and it’s disastrous to assume the other party has the matter in hand). If we can’t talk about it, how can we expect people to be doing it right and not making stupid mistakes? That being the case, how do we talk about Content? Let’s start by finding a way to talk about it without blushing and scuffing our shoes. And there’s a reason I’ve been treating Content as a Proper Noun. The first step, and I mean really-first-step-way-back-at-the-beginning-of-the-project-while-you-are-still-scoping-out-what-the-hell-you-might-do-for-each-other-and-it’s-still-all-a-bit-awkward-like-a-first-date, is for you to explain to the client how important it is that you, together, work out what is important to your users as part of the user experience design, so that your users get the best user experience. The trouble is that, in most cases, this would lead to blank stares, possibly followed by a light cough and a query about using Comic Sans because it seems friendly. Let’s start by ensuring your clients understand the task ahead. You see, all the time we talk about the Content we do our clients a big disservice. Content is poorly defined. It looms over a project completion point like an unscalable (in the sense of a dozen stacked Kilimanjaros), seething, massive, singular entity. The Content. Defining the problem. We should really be thinking of the Content as ‘contents’; as many parts that come together to form a mighty experience, like hit 90s kids’ TV show Mighty Morphin Power Rangers*. *For those of you who might have missed the Power Rangers, they were five teenagers with attitude, each given crazy mad individual skillz and a coloured lycra suit from an alien overlord. In return, they had to fight a new monster of the week using their abilities and weaponry in sync (even if the audio was not) and then, finally, in thrilling combination as a Humongous Mechanoid Machine of Awesome. They literally joined their individual selves, accessories and vehicles into a big robot. It was a toy manufacturer’s wet dream. So, why do I say Content is like the Power Rangers? Because Content is not just a humongous mecha. It is a combination of well-crafted pieces of contents that come together to form a well-crafted humongous mecha. Of Content. The Red Power Ranger was always the leader. You can imagine your text contents, found on about pages, product descriptions, blog articles, and so on, as being your Red Power Ranger. Maybe your pictures are your Yellow Power Ranger; video is Blue (not used as much as the others, but really impressive when given a good storyline); maybe Pink is your infographics (it’s wrong to find it sexier than the other equally important Rangers, but you kind of do anyway). And so on. These bits of content – Red Text Ranger, Yellow Picture Ranger and others – often join together on a page, like they are teaming up to fight the bad guy in an action scene, and when they all come together (your standard workaday huge mecha) in a launched site, that’s when Content becomes an entity. While you might have a vision for the whole site, Content rarely works that way. Of course, you keep your eye on the bigger prize, the completion of your mega robot, but to get there you need to assemble your working parts, the cogs and springs of contents that will mesh together to finally create your Humongous Mecha of Content. You create parts and join them to form a whole. (It’s rarely seamless; often we need to adjust as we go, but we can create our Mecha’s blueprint by making sure we have all the requisite parts.) The point here is the order these parts were created. No alien overlord plans a Humongous Mechanoid and then thinks, “Gee, how can I split this into smaller fighting units powered by teenagers in snazzy shiny suits?” No toy manufacturer goes into production of a mega robot, made up of model mecha vehicles with detachable arsenal, without thinking how they will easily fit back together to form the ‘Buy all five now to create the mega robot’ set. No good contents are created as a singular entity and chunked up to be slotted in to place any which way, into the body of a site. Think contents, not the Content. Think of contents as smaller units, or as a plural. The Content is what you have at the end. The contents are what you are creating and they are easy to break down. You are no longer scaling the unscalable. You can draw the map and plot the path, page by page, section by section. The page table is your friend To do this, I use a page table. A page table is a simple table template you can create in the word processor of your choice, that you use to tell you everything about the contents of a page – everything except the contents itself. Here’s a page table I created for an employee’s guide to redundancy in the alpha.gov.uk website: Guide to redundancy for employees Page objective: Provide specific information for employees who are facing redundancy about the process, their options and next steps. Source content: directgov page on Redundancy. Scope: In scope Page title An employee’s guide to redundancy Priority content Message: You have rights as an employee facing redundancy Method: A guide written in plain English, with links to appropriate additional content. A video guide (out of scope). Covers the stages of redundancy and rights for those in trade unions and not in trade unions. Glossary of unfamiliar terms. Call to action: Read full guide, act to explore redundancy actions, benefits or new employment. Assets: link to redundancy calculator. Secondary Related items, or popular additional links. Additional tools, such as search and suggestions. location set v not set states microcopy encouraging location set where location may make a difference to the content – ie, Scotland/Northern Ireland. Tertiary Footer and standard links. Content creation: Content exists but was created within the constraints of the previous CMS. Review, correct and edit where necessary. Maintenance: should be flagged for review upon advice from Department of Work and Pensions, and annually. Technology/Publishing/Policy implications: Should be reviewed once the glossary styles have been decided. No video guide in scope at this time, so languages should be simple and screen reader friendly. Reliance on third parties: None, all content and source exists in house. Outstanding questions: None. Download a copy of this page table This particular page table template owes a lot to Brain Traffic’s version found in Kristina Halvorson’s book Content Strategy for the Web. With smaller clients than, say, the government, I might use something a bit more casual. With clients who like timescales and deadlines, I might turn it into a covering sheet, with signatures and agreements from two departments who have to work together to get the piece done on time. I use page tables, and the process of working through them, to reassure clients that I understand the task they face and that I can help them break it down section by section, page stack to page, down to product descriptions and interaction copy. About 80% of my clients break into relieved smiles. Most clients want to work with you to produce something good, they just don’t understand how, and they want you to show them the mountain path on the map. With page tables, clients can understand that with baby steps they can break down their content requirements and commission content they need in time for the designers to work with it (as opposed to around it). If I was Santa, these clients would be on my nice list for sure. My own special brand of Voldemort-content-evilness comes in how I wield my page tables for the other 20%. Page tables are not always thrilling, I’ll admit. Sometimes they get ignored in favour of other things, yet they are crucial to the continual growth and maintenance of a truly content-led site. For these naughty list clients who, even when given the gift of the page table, continually say “Ooh, yes. Content. Right”, I have a special gift. I have a stack of recycled paper under my desk and a cheap black and white laser printer. And I print a blank page table for every conceivable page I can find on the planned redesign. If I’m feeling extra nice, I hole punch them and put them in a fat binder. There is nothing like saying, “This is all the contents you need to have in hand for launch”, and the satisfying thud the binder makes as it hits the table top, to galvanize even the naughtiest clients to start working with you to create the content you need to really create in a content-out way. 2011 Relly Annett-Baker rellyannettbaker 2011-12-15T00:00:00+00:00 https://24ways.org/2011/extracting-the-content/ content
1 Why Bother with Accessibility? Web accessibility (known in other fields as inclusive design or universal design) is the degree to which a website is available to as many people as possible. Accessibility is most often used to describe how people with disabilities can access the web. How we approach accessibility In the web community, there’s a surprisingly inconsistent approach to accessibility. There are some who are endlessly dedicated to accessible web design, and there are some who believe it so intrinsic to the web that it shouldn’t be considered a separate topic. Still, of those who are familiar with accessibility, there’s an overwhelming number of designers, developers, clients and bosses who just aren’t that bothered. Over the last few months I’ve spoken to a lot of people about accessibility, and I’ve heard the same reasons to ignore it over and over again. Let’s take a look at the most common excuses. Excuse 1: “People with disabilities don’t really use the web” Accessibility will make your site available to more people — the inclusion case In the same way that the accessibility of a building isn’t just about access for wheelchair users, web accessibility isn’t just about blind users and screen readers. We can affect positively the lives of many people by making their access to the web easier. There are four main types of disability that affect use of the web: Visual Blindness, low vision and colour-blindness Auditory Profoundly deaf and hard of hearing Motor The inability to use a mouse, slow response time, limited fine motor control Cognitive Learning difficulties, distractibility, the inability to focus on large amounts of information None of these disabilities are completely black and white Examining deafness, it’s clear from the medical scale that there are many grey areas between full hearing and total deafness: mild moderate moderately severe severe profound totally deaf For eyesight, and brain conditions that affect what users see, there is a huge range of conditions and challenges: astigmatism colour blindness akinetopsia (motion blindness) scotopic visual sensitivity (visual stress related to light) visual agnosia (impaired recognition or identification of objects) While we might have medical and government-recognised definitions that tell us what makes a disability, day-to-day life is not so straightforward. People experience varying degrees of different conditions, and often one or more conditions at a time, creating a false divide when you view disability in terms of us and them. Impairments aren’t always permanent As we age, we’re more likely to experience different levels of visual, auditory, motor and cognitive impairments. We might have an accident or illness that affects us temporarily. We might struggle more earlier or later in the day. There are so many little physiological factors that affect the way people interact with the web that we can’t afford to make any assumptions based on our own limited experiences. Impairments might be somewhere between the user and the website There are also impairments that aren’t directly related to the user. Environmental factors have a huge effect on the way people interact with the web. These could be: Low bandwidth, or intermittent internet connection Bright light, rain, or other weather-based conditions Noisy environments, or a location where the user doesn’t want to disturb their neighbours with sound Browsing with mobile devices, games consoles and other non-desktop devices Browsing with legacy browsers or operating systems Such environmental factors show that it’s not just those with physical impairments who benefit from more accessible websites. We started designing responsive websites so we could be more future-friendly, and with a shared goal of better optimised experiences, accessibility should be at the core of responsive web design. Excuse 2: “We don’t want to affect the experience for the majority of our users” Accessibility will improve your site for all your users — the usability case On a basic level, the different disability groups, as shown in the inclusion case, equate to simple usability goals: Visual – make it easy to read Auditory – make it easy to hear Motor – make it easy to interact Cognitive – make it easy to understand and focus Taking care to ensure good usability in these areas will also have an impact on accessibility. Unless your site is catering specifically to a particular disability, where extreme optimisation is most beneficial, taking care to design with accessibility in mind will rarely negatively affect the experience of your wider audience. Excuse 3: “We don’t have the budget for accessibility” Accessibility will make you money — the business case By reducing your audience through ignoring accessibility, you’re potentially excluding the income from those users. Designing with accessibility in mind from the beginning of a project makes it easier to make small inexpensive optimisations as part of the design and development process, rather than bolting on costly updates to increase your potential audience later on. The following are excerpts from a white paper about companies that increased the accessibility of their websites to comply with government regulation. Improvements in accessibility doubled Legal and General’s life insurance sales online. Improvements in accessibility increased Tesco’s grocery home delivery sales by £13 million in 2005… To their surprise they found that many normal visitors preferred the ease of navigation and improved simplicity of the [parallel] accessible site and switched to use it. Tesco have replaced their ‘normal’ site with their accessible version and expect a further increase in revenues. Improvements in accessibility increased Virgin.net sales by 68%. Statistics all from WSI white paper: Improve your website’s usability and accessibility to increase sales (PDF). Excuse 4: “Accessible websites are ugly” Accessibility won’t stop your site from being beautiful — the beauty case Many people use ugly accessible websites as proof that all accessible websites are ugly. This just isn’t the case. I’ve compiled some examples of beautiful and accessible websites with screenshots of how they look through the Color Oracle simulator and how they perform when run through Webaim’s Wave accessibility checker tool. While automated tools are no substitute for real users, they can help you learn more about good practices, and give you guidance on where your site needs improvements to make it more accessible. Amazon.co.uk It may not be a decorated beauty, but Amazon is often first in functional design. It’s a huge website with a lot of interactive content, but it generates just five errors on the Wave test, and is easy to read under a Color Oracle filter. Screenshot of Amazon website Screenshot of Amazon’s Wave results – five errors Screenshot of Amazon through a Color Oracle filter 24 ways When Tim Van Damme redesigned 24 ways back in 2007, it was a striking and unusual design that showed what could be achieved with CSS and some imagination. Despite the complexity of the design, it gets an outstanding zero errors on the Wave test, and is still readable under a Color Oracle filter. Screenshot of pre-2013 24 ways website design Screenshot of 24 ways Wave results – zero errors Screenshot of 24ways through a Color Oracle filter Opera’s Shiny Demos Demos and prototypes are notorious for ignoring accessibility, but Opera’s Shiny Demos site shows how exploring new technologies doesn’t have to exclude anyone. It only gets one error on the Wave test, and looks fine under a Color Oracle filter. Screenshot of Opera’s Shiny Demos website Screenshot of Opera’s Shiny Demos Wave results – 1 error Screenshot of Opera’s Shiny Demos through a Color Oracle filter SoundCloud When a site is more app-like, relying on more interaction from the user, accessibility can be more challenging. However, SoundCloud only gets one error on the Wave test, and the colour contrast holds up well under a Color Oracle filter. Screenshot of SoundCloud website Screenshot of SoundCloud’s Wave results – one error Screenshot of SoundCloud through a Color Oracle filter Education and balance As with most web design, doing accessibility well is about combining your knowledge of accessibility with your project’s context to create a balance that serves your users’ needs. Your types of content and interactions will dictate one set of constraints. Your users’ needs and goals will dictate another. In broad terms, web design as a practice is finding the equilibrium between these constraints. And then there’s just caring. The web as a platform is open, affordable and available to many. Accessibility is our way to ensure that nobody gets shut out. 2013 Laura Kalbag laurakalbag 2013-12-10T00:00:00+00:00 https://24ways.org/2013/why-bother-with-accessibility/ design
13 Data-driven Design with an Annual Survey Too often, we base designs on assumptions that don’t match customer perspectives. Why? Because the data we need to make informed decisions isn’t available. Imagine starting off the year with a treasure trove of user data that can be filtered, sliced, and diced to inform new UI designs, help you discover where users struggle the most, and expose emerging trends in your customers’ needs that could lead to new features. Why, that would be useful indeed. And it’s easy to obtain by conducting an annual survey. Annual surveys may seem as exciting as receiving socks and undies for Christmas, but they’re the gift that keeps on giving all year long (just like fresh socks and undies). I’m not ashamed to admit it: I love surveys! Each time my design research team runs a survey, we learn so much about customer motivations, interests, and behaviors. Surveys provide an aggregate snapshot of your users that can’t easily be obtained by other research methods, and they can be conducted quickly too. You can build a survey in a few hours, run a pilot test in a day, and have real results streaming in the following day. Speed is essential if design research is going to keep pace with a busy product release schedule. Surveys are also an invaluable springboard for customer interviews, which provide deep perspectives on user behavior. If you play your cards right as you construct your survey, you can capture a user ID and an email address for each respondent, making it easy to get in touch with customers whose feedback is particularly intriguing. No more recruiting customers for your research via Twitter or through a recruiting company charging a small fortune. You can filter survey responses and isolate the exact customers to talk with in moments, not months. I love this connected process of sending targeted surveys, filtering the results, and then — with surgical precision — selecting just the right customers to interview. Not only is it fast and cheap, but it lets design researchers do quantitative and qualitative research in a coordinated way. Aggregate survey responses help you quantify the perspectives of different user segments, and interviews help you get into the heads of your customers. An annual survey can give your team the data needed to make more informed designs in the new year. It all starts with a plan. Planning your survey Before you start jotting down questions to ask users, spend some time thinking about the work your team will be doing in the coming year. Are you planning new mobile apps or a responsive redesign? Then questions about devices used and behaviors around mobile devices might be in order. Rethinking your content strategy? Then you might want to ask a few questions about how your customers consume content. You can’t predict all of the projects you’ll be working on in the coming year, but tuck a couple of sections in your survey about the projects you’re certain about. This will give you the research you need to start new projects with solid foundational data. Google Drive is a great place to start collaboratively building survey questions with colleagues. Questions that seem crystal clear in your head get challenged, refined, or even expanded quickly when the entire team can chime in. As you craft your survey, try to consider how you’ll filter it once all of the data is compiled. Do you need to see responses by industry, by age of an account, by devices used, or by size of company? Adding the right filter questions can help you discover fascinating patterns in user segments. Filtering on responses to a few questions can surface insights like: customers in non-profit companies with more than 100 employees are 17% more likely to use an Android phone and are most attracted to features A, D, and F. A designer working on the landing page for a non-profit would love to have concrete information like this. Filter questions are key, so consider them carefully. But don’t go overboard — too many of them and you’ll start to hurt your survey response rate. Multiple choice questions are the heart of most surveys because respondents can complete them quickly, which increases response rate, and researchers can analyze them without a lot of manual categorization. Open text field questions are valuable too, but be careful not to add too many to your survey. You’ll hate yourself after the survey’s done and you have to sort through and tag thousands of open responses so patterns become visible. Oy vey! An open-ended question works well towards the end of the survey. At this point respondents have a lot of topics swirling around in their head and tend to say weird things that will pique your interest. This is where you’ll find the outliers who are using your product. They’ll be fascinating to interview, and on occasion will help you see your work in a brand new way. Conclude your survey with a question asking permission to get in touch for a followup interview so you don’t pester people who want to be left alone. With your questions nailed down, it’s time to build out that survey and get it ready for sending! Building your survey There are dozens of apps you could use to build your survey, but SurveyMonkey is the one that I prefer. It lets you pass in variables for each respondent such as user ID and email address. Metadata about respondents is essential if you’re going to do any follow-up interviews with your customers in the coming year. SurveyMonkey also makes it easy to set up question logic, showing questions to customers only if they responded in a certain way to a prior question. This helps you avoid asking irrelevant questions to some respondents. Determining survey recipients Once you’ve chosen a survey tool and entered all of your questions, you need to gather a list of recipients. Your first instinct will be to send it to everyone. You might say, “I need maximum response and metric shit tons of data!” But this is rarely the best approach — broad distribution almost always leads to lower response rates, increased noise, and decreased signal in your data. Are there subsets of customers you could send to, like only those who are active, those who are paying, or have been with you for a certain length of time? Talk to the keepers of your customer database and see how they can segment it so you can be certain you’re talking to just the people who will have the most relevant responses for your needs. If you want to get super nerdy when finding the right customer sample to survey, use a [sample size calculator]. Sampling is a deep subject best explored in other articles. Crafting your survey email After focusing your energies on writing and building your survey, the email asking your customers to respond seems almost trivial, but it will greatly influence your response rate. Take great care when writing your subject line and the body of the email. If you can pull it off, A/B testing subject lines can greatly improve the open rate of your email and click-through to your survey. My design research team has seen a ~10% increase in open and click rates when we A/B tested. We’ve found that personalizing subject lines and greetings with the recipients name (ie. “Hey, Aarron. How can we make our app work better for you?”) gave us the best response rates. Your mileage may vary. The tone of your email is important — be friendly, honest, and to the point. Those that are passionate about your product will be happy to share their perspective. Writing a survey email that people will actually respond to ain’t easy — in fact, they’re almost always annoying. But Ben Chestnut found a non-annoying way to send a survey email and improve response rates. The email sent for the 2013 MailChimp survey let customers know what we’d been up to in the previous year, and invited feedback on what we should work on in the coming year. The link to your survey should be a clear call to action. A big button with a label like “Answer a few questions” generally does the trick. The URL linking to the survey will need to include some variables like user ID and email. It might look something like this if you’re using SurveyMonkey: http://surveymonkey.com/s/somesurveyid/?uid=*|UID|*&email=*|email|* As each email is sent, the proper data will be populated in the variables, passing it on to the survey app for inclusion in each response. This is the magic that will help you pinpoint customers to interview down the road, so take special care to test that all is working before sending to all recipients. How you construct the survey link will vary depending on what survey tool and email service provider you use, so don’t take my example as gospel. You’ll need to read the documentation for your survey and email apps to set things up properly. Pilot before sending By now, you’ve whipped yourself into a fever pitch over your brilliant survey and the data you hope to collect. Your finger is on the send button, poised for action, but there’s one very important thing to do before you send to the entire list of customers: send a pilot email. How do you know if your questions are clear, your form logic is sound, and you’re passing variables from the email to the survey properly? You won’t, unless you send to a small segment of your recipients first. The data collected in your pilot will make plain where your survey needs refinement. This data won’t be used in your final analysis, as you’re probably going to make a few changes to your questions. Send the pilot survey to enough people that you can really stress test the clarity of the questions and data you’re gathering, while considering how much data can you comfortably throw out. If you’re sending your final survey to a few thousand people, you might find a couple of hundred recipients for your pilot will give you enough insight into what to improve while leaving the vast majority of the recipients for your final survey. After you’ve sent your pilot, made your survey adjustments, and ensured the variables are being passed from your email into the survey app, you’re ready to send to the remainder of your customers. This is your moment of glory! Analyzing your results After a couple of weeks you can probably safely close the survey so no other responses come in as you transition from data gathering to data analysis. Any survey app worth its salt will chart responses to your multiple choice questions. Reviewing these charts is a great place to start your analysis. Is there anything particularly interesting that stands out? Jot down some of your observations. I like to print screenshots of the charts for each question, highlighting areas of interest. These prints become a particularly handy reference point for the next step in your analysis. Printing results from a survey makes comparing different customers easy. Viewing aggregate data about all responses is interesting, but the deltas between different types of customers are where the real revelations happen. Remember those filter questions you added to your survey? They’re the tool that’ll help you compare customer segments. Most survey apps will let you filter the data based on response to a question. If the one you’re using doesn’t, you can always export your data and create pivot tables in Excel. Try filtering your data based on one of your filter questions, such as industry, company size, or devices used. Now compare those printed screenshots of baseline responses to the filtered data. Chances are you’ll see some significant differences in how each group responded to your questions, giving you clues about the variance in interests and motivations in customer segments and a leg up as you work on future design projects. Open-ended responses are equally interesting, but much more time-consuming to analyze. Yes, you need to read through thousands of responses, some of which are constructive and some of which are not. Taking the time to tag each open response will help you see trends and filter out the responses that are unhelpful. Unlike questions with predefined answers, open-ended responses let users express unique ideas and use cases you may not be looking for. The tedium of reading thousands of response is always cut by eureka moments when users tell you something fascinating that changes your perspective on your app. These are the folks you want to pull out for follow-up interviews. Because you’ve already captured their email addresses when you set up your survey and your email, getting in touch will be a piece of cake. Filter, compare, interview, and summarize; then share your findings with your colleagues. Reports are great for head honchos, but if you want to really inform and inspire, create a video, a poster series, or even a comic to communicate what you’ve learned. Want to get really fancy? Store your survey results in a centrally accessible location so anyone in your company can research and discover the insights they need to make more informed designs. Good design researchers discover valuable insights. Great design researchers turn those insights into stories. Conclusion As we enter the new year, it’s a great time to reflect on the work we’ve done in the past and how we can do better in the future. Without a doubt, designers working with a foundation of insights about customers can make more effective UIs. But designers aren’t the only ones who stand to gain from the data collected in an annual survey—anyone who makes things for or communicates with customers will find themselves empowered to do better work when they know more about the people they serve. The data you collect with your survey is a fantastic holiday gift to your colleagues, one that they’ll appreciate throughout the year. 2013 Aarron Walter aarronwalter 2013-12-13T00:00:00+00:00 https://24ways.org/2013/data-driven-design-with-an-annual-survey/ design
26 Integrating Contrast Checks in Your Web Workflow It’s nearly Christmas, which means you’ll be sure to find an overload of festive red and green decorating everything in sight—often in the ugliest ways possible. While I’m not here to battle holiday tackiness in today’s 24 ways, it might just be the perfect reminder to step back and consider how we can implement colour schemes in our websites and apps that are not only attractive, but also legible and accessible for folks with various types of visual disabilities. This simulated photo demonstrates how red and green Christmas baubles could appear to a person affected by protanopia-type colour blindness—not as festive as you might think. Source: Derek Bruff I’ve been fortunate to work with Simply Accessible to redesign not just their website, but their entire brand. Although the new site won’t be launching until the new year, we’re excited to let you peek under the tree and share a few treats as a case study into how we tackled colour accessibility in our project workflow. Don’t worry—we won’t tell Santa! Create a colour game plan A common misconception about accessibility is that meeting compliance requirements hinders creativity and beautiful design—but we beg to differ. Unfortunately, like many company websites and internal projects, Simply Accessible has spent so much time helping others that they had not spent enough time helping themselves to show the world who they really are. This was the perfect opportunity for them to practise what they preached. After plenty of research and brainstorming, we decided to evolve the existing Simply Accessible brand. Or, rather, salvage what we could. There was no established logo to carry into the new design (it was a stretch to even call it a wordmark), and the Helvetica typography across the site lacked any character. The only recognizable feature left to work with was colour. It was a challenge, for sure: the oranges looked murky and brown, and the blues looked way too corporate for a company like Simply Accessible. We knew we needed to inject a lot of personality. The old Simply Accessible website and colour palette. After an audit to round up every colour used throughout the site, we dug in deep and played around with some ideas to bring some new life to this palette. Choose effective colours Whether you’re starting from scratch or evolving an existing brand, the first step to having an effective and legible palette begins with your colour choices. While we aren’t going to cover colour message and meaning in this article, it’s important to understand how to choose colours that can be used to create strong contrast—one of the most important ways to create hierarchy, focus, and legibility in your design. There are a few methods of creating effective contrast. Light and dark colours The contrast that exists between light and dark colours is the most important attribute when creating effective contrast. Try not to use colours that have a similar lightness next to each other in a design. The red and green colours on the left share a similar lightness and don’t provide enough contrast on their own without making some adjustments. Removing colour and showing the relationship in greyscale reveals that the version on the right is much more effective. It’s important to remember that red and green colour pairs cause difficulty for the majority of colour-blind people, so they should be avoided wherever possible, especially when placed next to each other. Complementary contrast Effective contrast can also be achieved by choosing complementary colours (other than red and green), that are opposite each other on a colour wheel. These colour pairs generally work better than choosing adjacent hues on the wheel. Cool and warm contrast Contrast also exists between cool and warm colours on the colour wheel. Imagine a colour wheel divided into cool colours like blues, purples, and greens, and compare them to warm colours like reds, oranges and yellows. Choosing a dark shade of a cool colour, paired with a light tint of a warm colour will provide better contrast than two warm colours or two cool colours. Develop colour concepts After much experimentation, we settled on a simple, two-colour palette of blue and orange, a cool-warm contrast colour scheme. We added swatches for call-to-action messaging in green, error messaging in red, and body copy and form fields in black and grey. Shades and tints of blue and orange were added to illustrations and other design elements for extra detail and interest. First stab at a new palette. We introduced the new palette for the first time on an internal project to test the waters before going full steam ahead with the website. It gave us plenty of time to get a feel for the new design before sharing it with the public. Putting the test palette into practice with an internal report It’s important to be open to changes in your palette as it might need to evolve throughout the design process. Don’t tell your client up front that this palette is set in stone. If you need to tweak the colour of a button later because of legibility issues, the last thing you want is your client pushing back because it’s different from what you promised. As it happened, we did tweak the colours after the test run, and we even adjusted the logo—what looked great printed on paper looked a little too light on screens. Consider how colours might be used Don’t worry if you haven’t had the opportunity to test your palette in advance. As long as you have some well-considered options, you’ll be ready to think about how the colour might be used on the site or app. Obviously, in such early stages it’s unlikely that you’re going to know every element or feature that will appear on the site at launch time, or even which design elements could be introduced to the site later down the road. There are, of course, plenty of safe places to start. For Simply Accessible, I quickly mocked up these examples in Illustrator to get a handle on the elements of a website where contrast and legibility matter the most: text colours and background colours. While it’s less important to consider the contrast of decorative elements that don’t convey essential information, it’s important for a reader to be able to discern elements like button shapes and empty form fields. A basic list of possible colour combinations that I had in mind for the Simply Accessible website Run initial tests Once these elements were laid out, I manually plugged in the HTML colour code of each foreground colour and background colour on Lea Verou’s Contrast Checker. I added the results from each colour pair test to my document so we could see at a glance which colours needed adjustment or which colours wouldn’t work at all. Note: Read more about colour accessibility and contrast requirements As you can see, a few problems were revealed in this test. To meet the minimum AA compliance, we needed to slightly darken the green, blue, and orange background colours for text—an easy fix. A more complicated problem was apparent with the button colours. I had envisioned some buttons appearing over a blue background, but the contrast ratios were well under 3:1. Although there isn’t a guide in WCAG for contrast requirements of two non-text elements, the ISO and ANSI standard for visible contrast is 3:1, which is what we decided to aim for. We also checked our colour combinations in Color Oracle, an app that simulates the most extreme forms of colour blindness. It confirmed that coloured buttons over blue backgrounds was simply not going to work. The contrast was much too low, especially for the more common deuteranopia and protanopia-type deficiencies. How our proposed colour pairs could look to people with three types of colour blindness Make adjustments if necessary As a solution, we opted to change all buttons to white when used over dark coloured backgrounds. In addition to increasing contrast, it also gave more consistency to the button design across the site instead of introducing a lot of unnecessary colour variants. Putting more work into getting compliant contrast ratios at this stage will make the rest of implementation and testing a breeze. When you’ve got those ratios looking good, it’s time to move on to implementation. Implement colours in style guide and prototype Once I was happy with my contrast checks, I created a basic style guide and added all the colour values from my colour exploration files, introduced more tints and shades, and added patterned backgrounds. I created examples of every panel style we were planning to use on the site, with sample text, links, and buttons—all with working hover states. Not only does this make it easier for the developer, it allows you to check in the browser for any further contrast issues. Run a final contrast check During the final stages of testing and before launch, it’s a good idea to do one more check for colour accessibility to ensure nothing’s been lost in translation from design to code. Unless you’ve introduced massive changes to the design in the prototype, it should be fairly easy to fix any issues that arise, particularly if you’ve stayed on top of updating any revisions in the style guide. One of the more well-known evaluation tools, WAVE, is web-based and will work in any browser, but I love using Chrome’s Accessibility Tools. Not only are they built right in to the Inspector, but they’ll work if your site is password-protected or private, too. Chrome’s Accessibility Tools audit feature shows that there are no immediate issues with colour contrast in our prototype The human touch Finally, nothing beats a good round of user testing. Even evaluation tools have their flaws. Although they’re great at catching contrast errors for text and backgrounds, they aren’t going to be able to find errors in non-text elements, infographics, or objects placed next to each other where discernible contrast is important. Our final palette, compared with our initial ideas, was quite different, but we’re proud to say it’s not just compliant, but shows Simply Accessible’s true personality. Who knows, it may not be final at all—there are so many opportunities down the road to explore and expand it further. Accessibility should never be an afterthought in a project. It’s not as simple as adding alt text to images, or running your site through a compliance checker at the last minute and assuming that a pass means everything is okay. Considering how colour will be used during every stage of your project will help avoid massive problems before launch, or worse, launching with serious issues. If you find yourself working on a personal project over the Christmas break, try integrating these checks into your workflow and make colour accessibility a part of your New Year’s resolutions. 2014 Geri Coady gericoady 2014-12-22T00:00:00+00:00 https://24ways.org/2014/integrating-contrast-checks-in-your-web-workflow/ design
27 Putting Design on the Map The web can leave us feeling quite detached from the real world. Every site we make is really just a set of abstract concepts manifested as tools for communication and expression. At any minute, websites can disappear, overwritten by a newfangled version or simply gone. I think this is why so many of us have desires to create a product, write a book, or play with the internet of things. We need to keep in touch with the physical world and to prove (if only to ourselves) that we do make real things. I could go on and on about preserving the web, the challenges of writing a book, or thoughts about how we can deal with the need to make real things. Instead, I’m going to explore something that gives us a direct relationship between a website and the physical world – maps. A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected. Reif Larsen, The Selected Works of T.S. Spivet The simplest form of map on a website tends to be used for showing where a place is and often directions on how to get to it. That’s an incredibly powerful tool. So why is it, then, that so many sites just plonk in a default Google Map and leave it as that? You wouldn’t just use dark grey Helvetica on every site, would you? Where’s the personality? Where’s the tailored experience? Where is the design? Jumping into design Let’s keep this simple – we all want to be better web folk, not cartographers. We don’t need to go into the history, mathematics or technology of map making (although all of those areas are really interesting to research). For the sake of our sanity, I’m going to gloss over some of the technical areas and focus on the practical concepts. Tiles If you’ve ever noticed a map loading in sections, it’s because it uses tiles that are downloaded individually instead of requiring the user to download everything that they might need. These tiles come in many styles and can be used for anything that covers large areas, such as base maps and data. You’ve seen examples of alternative base maps when you use Google Maps as Google provides both satellite imagery and road maps, both of which are forms of base maps. They are used to provide context for the real world, or any other world for that matter. A marker on a blank page is useless. The tiles are representations of the physical; they do not have to be photographic imagery to provide context. This means you can design the map itself. The easiest way to conceive this is by comparing Google’s road maps with Ordnance Survey road maps. Everything about the two maps is different: the colours, the label fonts and the symbols used. Yet they still provide the exact same context (other maps may provide different context such as terrain contours). Comparison of Google Maps (top) and the Ordnance Survey (bottom). Carefully designing the base map tiles is as important as any other part of the website. The most obvious, yet often overlooked, aspect are aesthetics and branding. Maps could fit in with the rest of the site; for example, by matching the colours and line weights, they can enhance the full design rather than inhibiting it. You’re also able to define the exact purpose of the map, so instead of showing everything you could specify which symbols or labels to show and hide. I’ve not done any real research on the accessibility of base maps but, having looked at some of the available options, I think a focus on the typography of labels and the colour of the various elements is crucial. While you can choose to hide labels, quite often they provide the data required to make sense of the map. Therefore, make sure each zoom level is not too cluttered and shows enough to give context. Also be as careful when choosing the typeface as you are in any other design work. As for colour, you need to pay closer attention to issues like colour-blindness when using colour to convey information. Quite often a spectrum of colour will be used to show data, or to show the topography, so you need to be aware that some people struggle to see colour differences within a spectrum. A nice example of a customised base map can be found on Michael K Owens’ check-in pages: One of Michael K Owens’ check-in pages. As I’ve already mentioned, tiles are not just for base maps: they are also for data. In the screenshot below you can see how Plymouth Marine Laboratory uses tiles to show data with a spectrum of colour. A map from the Marine Operational Ecology data portal, showing data of adult cod in the North Sea. Technical You’re probably wondering how to design the base layers. I will briefly explain the concepts here and give you tools to use at the end of the article. If you’re worried about the time it takes to design the maps, don’t be – you can automate most of it. You don’t need to manually draw each tile for the entire world! We’ve learned the importance of web standards the hard way, so you’ll be glad (and I won’t have to explain the advantages) of the standard for web mapping from the Open Geospatial Consortium (OGC) called the Web Map Service (WMS). You can use conventional file formats for the imagery but you need a way to query for the particular tiles to show for the area and zoom level, that is what WMS does. Features Tiles are great for covering large areas but sometimes you need specific smaller areas. We call these features and they usually consist of polygons, lines or points. Examples include postcode boundaries and routes between places, or even something more dynamic such as borders of nations changing over time. Showing features on a map presents interesting design challenges. If the colour or shape conveys some kind of data beyond geographical boundaries then it needs to be made obvious. This is actually really hard, without building complicated user interfaces. For example, in the image below, is it obvious that there is a relationship between the colours? Does it need a way of showing what the colours represent? Choropleth map showing ranked postcode areas, using ViziCities. Features are represented by means of lines or colors; and the effective use of lines or colors requires more than knowledge of the subject – it requires artistic judgement. Erwin Josephus Raisz, cartographer (1893–1968) Where lots of boundaries are small and close together (such as a high street or shopping centre) will it be obvious where the boundaries are and what they represent? When designing maps, the hardest challenge is dealing with how the data is represented and how it is understood by the user. Technical As you probably gathered, we use WMS for tiles and another standard called the web feature service (WFS) for specific features. I need to stress that the difference between the two is that WMS is for tiling, whereas WFS is for specific features. Both can use similar file formats but should be used for their particular use cases. You may be wondering why you can’t just use a vector format such as KML, GeoJSON (or even SVG) – and you can – but the issue is the same as for WMS: you need a way to query the data to get the correct area and zoom level. User interface There is of course never a correct way to design an interface as there are so many different factors to take into consideration for each individual project. Maps can be used in a variety of ways, to provide simple information about directions or for complex visualisations to explain large amounts of data. I would like to just touch on matters that need to be taken into account when working with maps. As I mentioned at the beginning, there are so many Google Maps on the web that people seem to think that its UI is the only way you can use a map. To some degree we don’t want to change that, as people know how to use them; but does every map require a zoom slider or base map toggle? In fact, does the user need to zoom at all? The answer to that one is generally yes, zooming does provide more context to where the map is zoomed in on. In some cases you will need to let users choose what goes on the map (such as data layers or directions), so how do they show and hide the data? Does a simple drop-down box work, or do you need search? Google’s base map toggle is quite nice since it doesn’t offer many options yet provides very different contexts and styling. It isn’t until we get to this point that we realise just plonking a quick Google map is really quite ridiculous, especially when compared to the amount of effort we make in other areas such as colour, typography or how the CSS is written. Each of these is important but we need to make sure the whole site is designed, and that includes the maps as much as any other content. Putting it into practice I could ramble on for ages about what we can do to customise maps to fit a site’s personality and correctly represent the data. I wanted to focus on concepts and standards because tools constantly change and it is never good to just rely on a tool to do the work. That said, there are a large variety of tools that will help you turn these concepts into reality. This is not a comparison; I just want to show you a few of the many options you have for maps on the web. Google OK, I’ve been quite critical so far about Google Maps but that is only because there is such a large amount of the default maps across the web. You can style them almost as much as anything else. They may not allow you to use custom WMS layers but Google Maps does have its own version, called styled maps. Using an array of map features (in the sense of roads and lakes and landmarks rather than the kind WFS is used for), you can style the base map with JavaScript. It even lets you toggle visibility, which helps to avoid the issue of too much clutter on the map. As well as lacking WMS, it doesn’t support WFS, but it does support GeoJSON and KML so you can still show the features on the map. You should also check out Google Maps Engine (the new version of My Maps), which provides an interface for creating more advanced maps with a selection of different base maps. A premium version is available, essentially for creating map-based visualisations, and it provides a step up from the main Google Maps offering. A useful feature in some cases is that it gives you access to many datasets. Leaflet You have probably seen Leaflet before. It isn’t quite as popular as Google Maps but it is definitely used often and for good reason. Leaflet is a lightweight open source JavaScript library. It is not a service so you don’t have to worry about API throttling and longevity. It gives you two options for tiling, the ability to use WMS, or to directly get the file using variables in the filename such as /{z}/{x}/{y}.png. I would recommend using WMS over dynamic file names because it is a standard, but the ability to use variables in a file name could be useful in some situations. Leaflet has a strong community and a well-documented API. Mapbox As a freemium service, Mapbox may not be perfect for every use case but it’s definitely worth looking into. The service offers incredible customisation tools as well as lots of data sources and hosting for the maps. It also provides plenty of libraries for the various platforms, so you don’t have to only use the maps on the web. Mapbox is a service, though its map design tool is open source. Mapbox Studio is a vector-only version of their previous tool called Tilemill. Earlier I wrote about how typography and colour are as important to maps as they are to the rest of a website; if you thought, “Yes, but how on earth can I design those parts of a map?” then this is the tool for you. It is incredibly easy to use. Essentially each map has a stylesheet. If you do not want to open a paid-for Mapbox account, then you can export the tiles (as PNG, SVG etc.) to use with other map tools. OpenLayers After a long wait, OpenLayers 3 has been released. It is similar to Leaflet in that it is a library not a service, but it has a much broader scope. During the last year I worked on the GIS portal at Plymouth Marine Laboratory (which I used to show the data tiles earlier), it essentially used OpenLayers 2 to create a web-based geographic information system, taking a large amount of data and permitting analysis (such as graphs) without downloading entire datasets and complicated software. OpenLayers 3 has improved greatly on the previous version in both performance and accessibility. It is the ideal tool for complex map-based web apps, though it can be used for the simple use cases too. OpenStreetMap I couldn’t write an article about maps on the web without at least mentioning OpenStreetMap. It is the place to go for crowd-sourced data about any location, with complete road maps and a strong API. ViziCities The newest project on this list is ViziCities by Robin Hawkes and Peter Smart. It is a open source 3-D visualisation tool, currently in the very early stages of development. The basic example shows 3-D buildings around the world using OpenStreetMap data. Robin has used it to create some incredible demos such as real-time London underground trains, and planes landing at an airport. Edward Greer and I are currently working on using ViziCities to show ideal housing areas based on particular personas. We chose it because the 3-D aspect gives us interesting possibilities for the data we are able to visualise (such as bar charts on the actual map instead of in the UI). Despite not being a completely stable, fully featured system, ViziCities is worth taking a look at for some use cases and is definitely going to go from strength to strength. So there you have it – a whistle-stop tour of how maps can be customised. Now please stop plonking in maps without thinking about it and design them as you design the rest of your content. 2014 Shane Hudson shanehudson 2014-12-11T00:00:00+00:00 https://24ways.org/2014/putting-design-on-the-map/ design
28 Why You Should Design for Open Source Let’s be honest. Most designers don’t like working for nothing. We rally against spec work and make a stand for contracts and getting paid. That’s totally what you should do as a professional designer in the industry. It’s your job. It’s your hard-working skill. It’s your bread and butter. Get paid. However, I’m going to make a case for why you could also consider designing for open source. First, I should mention that not all open source work is free work. Some companies hire open source contributors to work on their projects full-time, usually because that project is used by said company. There are other companies that encourage open source contribution and even offer 20%-time for these projects (where you can spend one day a week contributing to open source). These are super rad situations to be in. However, whether you’re able to land a gig doing this type of work, or you’ve decided to volunteer your time and energy, designing for open source can be rewarding in many other ways. Portfolio building New designers often find themselves in a catch-22 situation: they don’t have enough work experience showcased in their portfolio, which leads to them not getting much work because their portfolio is bare. These new designers often turn to unsolicited redesigns to fill their portfolio. An unsolicited redesign is a proof of concept in which a designer attempts to redesign a popular website. You can see many of these concepts on sites like Dribbble and Behance and there are even websites dedicated to showcasing these designs, such as Uninvited Designs. There’s even a subreddit for them. There are quite a few negative opinions on unsolicited redesigns, though some people see things from both sides. If you feel like doing one or two of these to fill your portfolio, that’s of course up to you. But here’s a better suggestion. Why not contribute design for an open source project instead? You can easily find many projects in great need of design work, from branding to information design, documentation, and website or application design. The benefits to doing this are far better than an unsolicited redesign. You get a great portfolio piece that actually has greater potential to get used (especially if the core team is on board with it). It’s a win-win situation. Not all designers are in need of portfolio filler, but there are other benefits to contributing design. Giving back to the community My first experience with voluntary work was when I collaborated with my friend, Vineet Thapar, on a pro bono project for the W3C’s Web Accessibility Initiative redesign project back in 2004. I was very excited to contribute CSS to a website that would get used by the W3C! Unfortunately, it decided to go a different direction and my work did not get used. However, it was still pretty exciting to have the opportunity, and I don’t regret a moment of that work. I learned a lot about accessibility from this experience and it helped me land some of the jobs I’ve had since. Almost a decade later, I got super into Sass. One of the core maintainers, Chris Eppstein, lamented on Twitter one day that the Sass website and brand was in dire need of design help. That led to the creation of an open source task force, Team Sass Design, and we revived the brand and the website, which launched at SassConf in 2013. It helped me in my current job. I showed it during my portfolio review when I interviewed for the role. Then I was able to use inspiration from a technique I’d tried on the Sass website to help create the more feature-rich design system that my team at work is building. But most importantly, I soon learned that it is exhilarating to be a part of the Sass community. This is the biggest benefit of all. It feels really good to give back to the technology I love and use for getting my work done. Ben Werdmuller writes about the need for design in open source. It’s great to see designers contributing to open source in awesome ways. When A List Apart’s website went open source, Anna Debenham contributed by helping build its pattern library. Bevan Stephens worked with FontForge on the design of its website. There are also designers who have created their own open source projects. There’s Dan Cederholm’s Pears, which shares common patterns in markup and style. There’s also Brad Frost’s Pattern Lab, which shares his famous method of atomic design and applies it to a design system. These systems and patterns have been used in real-world projects, such as RetailMeNot, so designers have contributed to the web in an even larger way simply by putting their work out there for others to use. That’s kind of fun to think about. How to get started So are you stoked about getting into the open source community? That’s great! Initially, you might get worried or uncomfortable in getting involved. That’s okay. But first consider that the project is open source for a reason. Your contribution (no matter how large or small) can help in a big way. If you find a project you’re interested in helping, make sure you do your research. Sometimes project team members will be attached to their current design. Is there already a designer on the core team? Reach out to that designer first. Don’t be too aggressive with why you think your design is better than theirs. Rather, offer some constructive feedback and a proposal of what would make the design better. Chances are, if the designer cares about the project, and you make a strong case, they’ll be up for it. Are there contribution guidelines? It’s proper etiquette to read these and follow the community’s rules. You’ll have a better chance of getting your work accepted, and it shows that you take the time to care and add to the overall quality of the project. Does the project lack guidelines? Consider starting a draft for that before getting started in the design. When contributing to open source, use your initiative to solve problems in a manageable way. Huge pull requests are hard to review and will often either get neglected or rejected. Work in small, modular, and iterative contributions. So this is my personal take on what I’ve learned from my experience and why I love open source. I’d love to hear from you if you have your own experience in doing this and what you’ve learned along the way as well. Please share in the comments! Thanks Drew McLellan, Eric Suzanne, Kyle Neath for sharing their thoughts with me on this! 2014 Jina Anne jina 2014-12-19T00:00:00+00:00 https://24ways.org/2014/why-you-should-design-for-open-source/ design
58 Beyond the Style Guide Much like baking a Christmas cake, designing for the web involves creating an experience in layers. Starting with a solid base that provides the core experience (the fruit cake), we can add further layers, each adding refinement (the marzipan) and delight (the icing). Don’t worry, this isn’t a misplaced cake recipe, but an evaluation of modular design and the role style guides can play in acknowledging these different concerns, be they presentational or programmatic. The auteur’s style guide Although trained as a graphic designer, it was only when I encountered the immediacy of the web that I felt truly empowered as a designer. Given a desire to control every aspect of the resulting experience, I slowly adopted the role of an auteur, exploring every part of the web stack: front-end to back-end, and everything in between. A few years ago, I dreaded using the command line. Today, the terminal is a permanent feature in my Dock. In straddling the realms of graphic design and programming, it’s the point at which they meet that I find most fascinating, with each dicipline valuing the creation of effective systems, be they for communication or code efficiency. Front-end style guides live at this intersection, demonstrating both the modularity of code and the application of visual design. Painting by numbers In our rush to build modular systems, design frameworks have grown in popularity. While enabling quick assembly, these come at the cost of originality and creative expression – perhaps one reason why we’re seeing the homogenisation of web design. In editorial design, layouts should accentuate content and present it in an engaging manner. Yet on the web we see a practice that seeks templated predictability. In ‘Design Machines’ Travis Gertz argued that (emphasis added): Design systems still feel like a novelty in screen-based design. We nerd out over grid systems and modular scales and obsess over style guides and pattern libraries. We’re pretty good at using them to build repeatable components and site-wide standards, but that’s sort of where it ends. […] But to stop there is to ignore the true purpose and potential of a design system. Unless we consider how interface patterns fully embrace the design systems they should be built upon, style guides may exacerbate this paint-by-numbers approach, encouraging conformance and suppressing creativity. Anatomy of a button Let’s take a look at that most canonical of components, the button, and consider what we might wish to document and demonstrate in a style guide. The different layers of our button component. Content The most variable aspect of any component. Content guidelines will exert the most influence here, dictating things like tone of voice (whether we should we use stiff, formal language like ‘Submit form’, or adopt a more friendly tone, perhaps ‘Send us your message’) and appropriate language. For an internationalised interface, this may also impact word length and text direction or orientation. Structure HTML provides a limited vocabulary which we can use to structure content and add meaning. For interactive elements, the choice of element can also affect its behaviour, such as whether a button submits form data or links to another page: <button type="submit">Button text</button> <a href="/index.html">Button text</a> Note: One of the reasons I prefer to use <button> instead of <input type=“button”>, besides allowing the inclusion of content other than text, is that it has a markup structure similar to links, therefore keeping implementation differences to a minimum. We should also think about each component within the broader scope of our particular product. For this we can employ a further vocabulary, which can be expressed by adding values to the class attribute. For a newspaper, we might use names like lede, standfirst and headline, while a social media application might see us reach for words like stream, action or avatar. Presentation The appearance of a component can never be considered in isolation. Informed by its relationship to other elements, style guides may document different stylistic variations of a component, even if the underlying function remains unchanged: primary and secondary button styles, for example. Behaviour A component can exhibit various states: blank, loading, partial, error and ideal, and a style guide should reflect that. Our button component is relatively simple, yet even here we need to consider hover, focused, active and disabled states. Transcending layers This overview reinforces Ethan’s note from earlier in this series: I’ve found that thinking about my design as existing in broad experience tiers – in layers – is one of the best ways of designing for the modern web. While it’s tempting to describe a component as series of layers, certain aspects will transcend several of these. The accessibility of a component, for example, may influence the choice of language, the legibility of text, colour contrast and which affordances are provided in different states. Visual design language: documenting the missing piece Even given this small, self-contained component, we can see several concerns at play, and in reviewing our button it seems we have most things covered. However, a few questions remain unanswered. Why does it have a blue background? Why are the borders 2px thick, with a radius of 4px? Why are we using that font, at that size and with that weight? These questions can be answered by our visual design language. More than a set of type choices and colour palettes, a design language can dicate common measures, ratios and the resulting grid(s) these influence. Ideally governed by a set of broader design principles, it can also inform an illustration style, the type of photography sourced or commissioned, and the behaviour of any animations. Whereas a style guide ensures conformity, having it underpinned by an effective design language will allow for flexibility; only by knowing the rules can you know how to break them! Type pairings in the US Web Design Standards guide. For a style guide to thoroughly articulate a visual design system, the spectrum of choices it allows for should be acknowledged. A fantastic example of this can be found in the US Web Design Standards. By virtue of being a set of standards designed to apply to a number of different sites, this guide offers a range of type pairings (that take into account performance considerations) and provides primary, secondary and tertiary palette relationships, with shades and tones thereof: Colour palettes in the US Web Design Standards guide. A visual language in code form Properly documenting our design language in a style guide is a good start, yet even better if it can be expressed in code. This is where CSS preprocessors become a powerful ally. In Sass, methods like mixins and maps can help us represent relationships between values. Variables (and CSS variables) extend the vocabulary provided natively by CSS, meaning we can describe patterns in terms of our own visual language. These tools effectively become an interface to our design system. Furthermore, they help maintain a separation of concerns, with visual presentation remaining where it should be: in our style sheets. Take this simple example, an article summary on a website counting down the best Christmas movies: The design for our simple component example. Our markup is as follows, using appropriate semantic HTML elements and incorporating the vocabulary from our collection of design patterns (expressed using the BEM methodology): <article class="summary"> <h1 class="summary__title"> <a href="scrooged.html"> <span class="summary__position">12</span> Scrooged (1988) </a> </h1> <div class="summary__body"> <p>It’s unlikely that Bill Murray could ever have got through his career without playing a version of Scrooge…</p> </div> <footer class="summary__meta"> <strong>Director:</strong> Richard Donner<br/> <strong>Stars:</strong> Bill Murray, Buddy Hackett, Karen Allen </footer> </article> We can then describe the presentation of this HTML by using Sass maps to define our palettes, mixins to include predefined font metrics, and variables to recall common measurements: .summary { margin-bottom: ($baseline * 4) } .summary__title { @include font-family(display-serif); @include font-size(title); color: palette(neutral, dark); margin-bottom: ($baseline * 4); border-top: $rule-height solid palette(primary, purple); padding-top: ($baseline * 2); } .summary__position { @include font-family(display-sans, 300); color: palette(neutral, mid); } .summary__body { @include font-family(text-serif); @include font-size(body); margin-bottom: ($baseline * 2); } .summary__meta { @include font-family(text-sans); @include font-size(caption); } Of course, this is a simplistic example for the purposes of demonstration. However, such thinking was employed at a much larger scale at the Guardian. Using a set of Sass components, complex patterns could be described using a language familar to everyone on the product team, be they a designer, developer or product owner: The design of a component on the Guardian website, described in terms of its Sass-powered design system. Unlocking possibility Alongside tools like preprocessors, newer CSS layout modules like flexbox and grid layout mean the friction we’ve long been accustomed to when creating layouts on the web is no longer present, and the full separation of presentation from markup is now possible. Now is the perfect time for graphic designers to advocate design systems that these developments empower, and ensure they’re fully represented in both documentation and code. That way, together, we can build systems that allow for greater visual expression. After all, there’s more than one way to bake a Christmas cake. 2015 Paul Lloyd paulrobertlloyd 2015-12-16T00:00:00+00:00 https://24ways.org/2015/beyond-the-style-guide/ design
67 What I Learned about Product Design This Year 2015 was a humbling year for me. In September of 2014, I joined a tiny but established startup called SproutVideo as their third employee and first designer. The role interests me because it affords the opportunity to see how design can grow a solid product with a loyal user-base into something even better. The work I do now could also have a real impact on the brand and user experience of our product for years to come, which is a thrilling prospect in an industry where much of what I do feels small and temporary. I got in on the ground floor of something special: a small, dedicated, useful company that cares deeply about making video hosting effortless and rewarding for our users. I had (and still have) grand ideas for what thoughtful design can do for a product, and the smaller-scale product design work I’ve done or helped manage over the past few years gave me enough eager confidence to dive in head first. Readers who have experience redesigning complex existing products probably have a knowing smirk on their face right now. As I said, it’s been humbling. A year of focused product design, especially on the scale we are trying to achieve with our small team at SproutVideo, has taught me more than any projects in recent memory. I’d like to share a few of those lessons. Product design is very different from marketing design The majority of my recent work leading up to SproutVideo has been in marketing design. These projects are so fun because their aim is to communicate the value of the product in a compelling and memorable way. In order to achieve this goal, I spent a lot of time thinking about content strategy, responsive design, and how to create striking visuals that tell a story. These are all pursuits I love. Product design is a different beast. When designing a homepage, I can employ powerful imagery, wild gradients, and somewhat-quirky fonts. When I began redesigning the SproutVideo product, I wanted to draw on all the beautiful assets I’ve created for our marketing materials, but big gradients, textures, and display fonts made no sense in this new context. That’s because the product isn’t about us, and it isn’t about telling our story. Product design is about getting out of the way so people can do their job. The visual design is there to create a pleasant atmosphere for people to work in, and to help support the user experience. Learning to take “us” out of the equation took some work after years of creating gorgeous imagery and content for the sales-driven side of businesses. I’ve learned it’s very valuable to design both sides of the experience, because marketing and product design flex different muscles. If you’re currently in an environment where the two are separate, consider switching teams in 2016. Designing for product when you’ve mostly done marketing, or vice versa, will deepen your knowledge as a designer overall. You’ll face new unexpected challenges, which is the only way to grow. Product design can not start with what looks good on Dribbble I have an embarrassing confession: when I began the redesign, I had a secret goal of making something that would look gorgeous in my portfolio. I have a collection of product shots that I admire on Dribbble; examples of beautiful dashboards and widgets and UI elements that look good enough to frame. I wanted people to feel the same way about the final outcome of our redesign. Mistakenly, this was a factor in my initial work. I opened Photoshop and crafted pixel-perfect static buttons and form elements and color palettes that — when applied to our actual product — looked like a toddler beauty pageant. It added up to a lot of unusable shininess, noise, and silliness. I was disappointed; these elements seemed so lovely in isolation, but in context, they felt tacky and overblown. I realized: I’m not here to design the world’s most beautiful drop down menu. Good design has nothing to do with ego, but in my experience designers are, at least a little bit, secret divas. I’m no exception. I had to remind myself that I am not working in service of a bigger Dribbble following or to create the most Pinterest-ing work. My function is solely to serve the users — to make life a little better for the good people who keep my company in business. This meant letting go of pixel-level beauty to create something bigger and harder: a system of elements that work together in harmony in many contexts. The visual style exists to guide the users. When done well, it becomes a language that users understand, so when they encounter a new feature or have a new goal, they already feel comfortable navigating it. This meant stripping back my gorgeous animated menu into something that didn’t detract from important neighboring content, and could easily fit in other parts of the app. In order to know what visual style would support the users, I had to take a wider view of the product as a whole. Just accept that designing a great product – like many worthwhile pursuits – is initially laborious and messy Once I realized I couldn’t start by creating the most Dribbble-worthy thing, I knew I’d have to begin with the unglamorous, frustrating, but weirdly wonderful work of mapping out how the product’s content could better be structured. Since we’re redesigning an existing product, I assumed this would be fairly straightforward: the functionality was already in place, and my job was just to structure it in a more easily navigable way. I started by handing off a few wireframes of the key screens to the developer, and that’s when the questions began rolling in: “If we move this content into a modal, how will it affect this similar action here?” “What happens if they don’t add video tags, but they do add a description?” “What if the user has a title that is 500 characters long?” “What if they want their video to be private to some users, but accessible to others?”. How annoying (but really, fantastic) that people use our product in so many ways. Turns out, product design isn’t about laying out elements in the most ideal scenario for the user that’s most convenient for you. As product designers, we have to foresee every outcome, and anticipate every potential user need. Which brings me to another annoying epiphany: if you want to do it well, and account for every user, product design is so much more snarly and tangled than you’d expect going in. I began with a simple goal: to improve the experience on just one of our key product pages. However, every small change impacts every part of the product to some degree, and that impact has to be accounted for. Every decision is based on assumptions that have to be tested; I test my assumptions by observing users, talking to the team, wireframing, and prototyping. Many of my assumptions are wrong. There are days when it’s incredibly frustrating, because an elegant solution for users with one goal will complicate life for users with another goal. It’s vital to solve as many scenarios as possible, even though this is slow, sometimes mind-bending work. As a side bonus, wireframing and prototyping every potential state in a product is tedious, but your developers will thank you for it. It’s not their job to solve what happens when there’s an empty state, error, or edge case. Showing you’ve accounted for these scenarios will win a developer’s respect; failing to do so will frustrate them. When you’ve created and tested a system that supports user needs, it will be beautiful Remember what I said in the beginning about wanting to create a Dribbble-worthy product? When I stopped focusing on the visual details of the design (color, spacing, light and shadow, font choices) and focused instead on structuring the content to maximize usability and delight, a beautiful design began to emerge naturally. I began with grayscale, flat wireframes as a strategy to keep me from getting pulled into the visual style before the user experience was established. As I created a system of elements that worked in harmony, the visual style choices became obvious. Some buttons would need to be brighter and sit off the page to help the user spot important actions. Some elements would need line separators to create a hierarchy, where others could stand on their own as an emphasized piece of content. As the user experience took shape, the visual style emerged naturally to support it. The result is a product that feels beautiful to use, because I was thoughtful about the experience first. A big takeaway from this process has been that my assumptions will often be proven wrong. My assumptions about how to design a great product, and how users will interact with that product, have been tested and revised repeatedly. At SproutVideo we’re about to undertake the biggest test of our work; we’re going to launch a small part of the product redesign to our users. If I’ve learned anything, it’s that I will continue to be humbled by the ongoing effort of making the best product I can, which is a wonderful thing. Next year, I hope you all get to do work that takes you out of our comfort zone. Be regularly confounded and embarrassed by your wrong assumptions, learn from them, and come back and tell us what you learned in 2016. 2015 Meagan Fisher meaganfisher 2015-12-14T00:00:00+00:00 https://24ways.org/2015/what-i-learned-about-product-design-this-year/ design
72 Designing with Contrast When an appetite for aesthetics over usability becomes the bellwether of user interface design, it’s time to reconsider who we’re designing for. Over the last few years, we have questioned the signifiers that gave obvious meaning to the function of interface elements. Strong textures, deep shadows, gradients — imitations of physical objects — were discarded. And many, rightfully so. Our audiences are now more comfortable with an experience that feels native to the technology, so we should respond in kind. Yet not all of the changes have benefitted users. Our efforts to simplify brought with them a trend of ultra-minimalism where aesthetics have taken priority over legibility, accessibility and discoverability. The trend shows no sign of losing popularity — and it is harming our experience of digital content. A thin veneer We are in a race to create the most subdued, understated interface. Visual contrast is out. In its place: the thinnest weights of a typeface and white text on bright color backgrounds. Headlines, text, borders, backgrounds, icons, form controls and inputs: all grey. While we can look back over the last decade and see minimalist trends emerging on the web, I think we can place a fair share of the responsibility for the recent shift in priorities on Apple. The release of iOS 7 ushered in a radical change to its user interface. It paired mobile interaction design to the simplicity and eloquence of Apple’s marketing and product design. It was a catalyst. We took what we saw, copied and consumed the aesthetics like pick-and-mix. New technology compounds this trend. Computer monitors and mobile devices are available with screens of unprecedented resolutions. Ultra-light type and subtle hues, difficult to view on older screens, are more legible on these devices. It would be disingenuous to say that designers have always worked on machines representative of their audience’s circumstances, but the gap has never been as large as it is now. We are running the risk of designing VIP lounges where the cost of entry is a Mac with a Retina display. Minimalist expectations Like progressive enhancement in an age of JavaScript, many good and sensible accessibility practices are being overlooked or ignored. We’re driving unilateral design decisions that threaten accessibility. We’ve approached every problem with the same solution, grasping on to the integrity of beauty, focusing on expression over users’ needs and content. Someone once suggested to me that a client’s website should include two states. The first state would be the ideal experience, with low color contrast, light font weights and no differentiation between links and text. It would be the default. The second state would be presented in whatever way was necessary to meet accessibility standards. Users would have to opt out of the default state via a toggle if it wasn’t meeting their needs. A sort of first-class, upper deck cabin equivalent of graceful degradation. That this would divide the user base was irrelevant, as the aesthetics of the brand were absolute. It may seem like an unusual anecdote, but it isn’t uncommon to see this thinking in our industry. Again and again, we place the burden of responsibility to participate in a usable experience on others. We view accessibility and good design as mutually exclusive. Taking for granted what users will tolerate is usually the forte of monopolistic services, but increasingly we apply the same arrogance to our new products and services. Imitation without representation All of us are influenced in one way or another by one another’s work. We are consciously and unconsciously affected by the visual and audible activity around us. This is important and unavoidable. We do not produce work in a vacuum. We respond to technology and culture. We channel language and geography. We absorb the sights and sounds of film, television, news. To mimic and copy is part and parcel of creating something an audience of many can comprehend and respond to. Our clients often look first to their competitors’ products to understand their success. However, problems arise when we focus on style without context; form without function; mimicry as method. Copied and reused without any of the ethos of the original, stripped of deliberate and informed decision-making, the so-called look and feel becomes nothing more than paint on an empty facade. The typographic and color choices so in vogue today with our popular digital products and services have little in common with the brands they are meant to represent. For want of good design, the message was lost The question to ask is: does the interface truly reflect the product? Is it an accurate characterization of the brand and organizational values? Does the delivery of the content match the tone of voice? The answer is: probably not. Because every organization, every app or service, is unique. Each with its own personality, its own values and wonderful quirks. Design is communication. We should do everything in our role as professionals to use design to give voice to the message. Our job is to clearly communicate the benefits of a service and unreservedly allow access to information and content. To do otherwise, by obscuring with fashionable styles and elusive information architecture, does a great disservice to the people who chose to engage with and trust our products. We can achieve hierarchy and visual rhythm without resorting to extreme reduction. We can craft a beautiful experience with fine detail and curiosity while meeting fundamental standards of accessibility (and strive to meet many more). Standards of excellence It isn’t always comfortable to step back and objectively question our design choices. We get lost in the flow of our work, using patterns and preferences we’ve tried and tested before. That our decisions often seem like second nature is a gift of experience, but sometimes it prevents us from finding our blind spots. I was first caught out by my own biases a few years ago, when designing an interface for the Bank of England. After deciding on the colors for the typography and interactive elements, I learned that the site had to meet AAA accessibility standards. My choices quickly fell apart. It was eye-opening. I had to start again with restrictions and use size, weight and placement instead to construct the visual hierarchy. Even now, I make mistakes. On a recent project, I used large photographs on an organization’s website to promote their products. Knowing that our team had control over the art direction, I felt confident that we could compose the photographs to work with text overlays. Despite our best effort, the cropped images weren’t always consistent, undermining the text’s legibility. If I had the chance to do it again, I would separate the text and image. So, what practical things can we consider to give our users the experience they deserve? Put guidelines in place Think about your brand values. Write down keywords and use them as a framework when choosing a typeface. Explore colors that convey the organization’s personality and emotional appeal. Define a color palette that is web-ready and meets minimum accessibility standards. Note which colors are suitable for use with text. Only very dark hues of grey are consistently legible so keep them for non-essential text (for example, as placeholders in form inputs). Find which background colors you can safely use with white text, and consider integrating contrast checks into your workflow. Use roman and medium weights for body copy. Reserve lighter weights of a typeface for very large text. Thin fonts are usually the first to break down because of aliasing differences across platforms and screens. Check that the size, leading and length of your type is always legible and readable. Define lower and upper limits. Small text is best left for captions and words in uppercase. Avoid overlaying text on images unless it’s guaranteed to be legible. If it’s necessary to optimize space in the layout, give the text a container. Scrims aren’t always reliable: the text will inevitably overlap a part of the photograph without a contrasting ground. Test your work Review legibility and contrast on different devices. It’s just as important as testing the layout of a responsive website. If you have a local device lab, pay it a visit. Find a computer monitor near a window when the sun is shining. Step outside the studio and try to read your content on a mobile device with different brightness levels. Ask your friends and family what they use at home and at work. It’s one way of making sure your feedback isn’t always coming from a closed loop. Push your limits You define what the user sees. If you’ve inherited brand guidelines, question them. If you don’t agree with the choices, make the case for why they should change. Experiment with size, weight and color to find contrast. Objects with low contrast appear similar to one another and undermine the visual hierarchy. Weak relationships between figure and ground diminish visual interest. A balanced level of contrast removes ambiguity and creates focal points. It captures and holds our attention. If you’re lost for inspiration, look to graphic design in print. We have a wealth of history, full of examples that excel in using contrast to establish visual hierarchy. Embrace limitations. Use boundaries as an opportunity to explore possibilities. More than just a facade Designing with standards encourages legibility and helps to define a strong visual hierarchy. Design without exclusion (through neither negligence or intent) gets around discussions of demographics, speaks to a larger audience and makes good business sense. Following the latest trends not only weakens usability but also hinders a cohesive and distinctive brand. Users will make means when they need to, by increasing browser font sizes or enabling system features for accessibility. But we can do our part to take as much of that burden off of the user and ask less of those who need it most. In architecture, it isn’t buildings that mimic what is fashionable that stand the test of time. Nor do we admire buildings that tack on separate, poorly constructed extensions to meet a bare minimum of safety regulations. We admire architecture that offers well-considered, remarkable, usable spaces with universal access. Perhaps we can take inspiration from these spaces. Let’s give our buildings a bold voice and make sure the doors are open to everyone. 2015 Mark Mitchell markmitchell 2015-12-13T00:00:00+00:00 https://24ways.org/2015/designing-with-contrast/ design
73 How to Make Your Site Look Half-Decent in Half an Hour Programmers like me are often intimidated by design – but a little effort can give a huge return on investment. Here are one coder’s tips for making any site quickly look more professional. I am a programmer. I am not a designer. I have a degree in computer science, and I don’t mind Comic Sans. (It looks cheerful. Move on.) But although I am a programmer, I want to make my sites look attractive. This is partly out of vanity, and partly realism. Vanity because I want people to think my work is good, and realism because the research shows that people won’t think a site is credible unless it also looks attractive. For a very long time after I became a programmer, I was scared of design. Design seemed to consist of complicated rules that weren’t written down anywhere, plus an unlearnable sense of taste, possessed only by a black-clad elite. But a little while ago, I decided to do my best to hack what it took to make my own projects look vaguely attractive. And although this doesn’t come close to the effect a professional designer could achieve, gathering these resources for improving a site’s look and feel has been really helpful. If I hadn’t figured out some basic design shortcuts, it’s unlikely that a weekend hack of mine would have ended up on page three of the Daily Mail. And too often now, I see excellent programming projects that don’t reach the audience they deserve, simply because their design doesn’t match their execution. So, if you are a developer, my Christmas present to you is this: my own collection of hacks that, used rightly, can make your personal programming projects look professional, quickly. None are hard to learn, most are free, and they let you focus on writing code. One thing to note about these tips, though. They are a personal, pragmatic compilation. They are suggestions, not a definitive guide. You will definitely get better results by working with a professional designer, and by studying design more deeply. If you are a designer, I would love to hear your suggestions for the best tools that I’ve missed, and I’d love to know how we programmers can do things better. With that, on to the tools… 1. Use Bootstrap If you’re not already using Bootstrap, start now. I really think that Bootstrap is one of the most significant technical achievements of the last few years: it democratizes the whole process of web design. Essentially, Bootstrap is a a grid system, with a bunch of common elements. So you can lay your site out how you want, drop in simple elements like forms and tables, and get a good-looking, consistent result, without spending hours fiddling with CSS. You just need HTML. Another massive upside is that it makes it easy to make any site responsive, so you don’t have to worry about writing media queries. Go, get Bootstrap and check out the examples. To keep your site lightweight, you can customize your download to include only the elements you want. If you have more time, then Mark Otto’s article on why and how Bootstrap was created at Twitter is well worth a read. 2. Pimp Bootstrap Using Bootstrap is already a significant advance on not using Bootstrap, and massively reduces the tedium of front-end development. But you also run the risk of creating Yet Another Bootstrap Site, or Hack Day Design, as it’s known. If you’re really pressed for time, you could buy a theme from Wrap Bootstrap. These are usually created by professional designers, and will give a polish that we can’t achieve ourselves. Your site won’t be unique, but it will look good quickly. Luckily, it’s pretty easy to make Bootstrap not look too much like Bootstrap – using fonts, CSS effects, background images, colour schemes and so on. Most of the rest of this article covers different ways to achieve this. We are going to customize this Bootstrap example page. This already has some custom CSS in the <head>. We’ll pull it all out, and create a new CSS file, custom.css. Then we add a reference to it in the header. Now we’re ready to start customizing things. 3. Fonts Web fonts are one of the quickest ways to make your site look distinctive, modern, and less Bootstrappy, so we’ll start there. First, we can add some sweet fonts, from Google Web Fonts. The intimidating bit is choosing fonts that look nice together. Luckily, there are plenty of suggestions around the web: we’re going to use one of DesignShack’s suggested free Google Fonts pairings. Our fonts are Corben (for headings) and Nobile (for body copy). Then we add these files to our <head>. <link href="http://fonts.googleapis.com/css?family=Corben:bold" rel="stylesheet" type="text/css"> <link href="http://fonts.googleapis.com/css?family=Nobile" rel="stylesheet" type="text/css"> …and this to custom.css: h1, h2, h3, h4, h5, h6 { font-family: 'Corben', Georgia, Times, serif; } p, div { font-family: 'Nobile', Helvetica, Arial, sans-serif; } Now our example looks like this. It’s not going to win any design awards, but it’s immediately better: I also recommend the web font services Fontdeck, or Typekit – these have a wider selection of fonts, and are worth the investment if you regularly need to make sites look good. For more font combinations, Just My Type suggests appealing pairings from Typekit. Finally, you can experiment with type pairing ideas at Type Connection. For the design background on pairing fonts, Typekit’s post is worth a read. 4. Textures An instant way to make a site look classy is to use textures. You know the grey, stripy, indefinably elegant background on 24ways.org? That. If only there was a superb resource listing attractive, free, ready-to-use textures… Oh wait, there’s Atle Mo’s Subtle Patterns. We’re going to use Cream Dust, for an effect that can only be described as subtle. We download the file to a new /img/ directory, then add this to the CSS file: body { background: url(/img/cream_dust.png) repeat 0 0; } Bang: For some design background on patterns, I recommend reading through Smashing Magazine’s guidelines on textures. (TL;DR version: use textures to enhance beauty, and clarify the information architecture of your site; but don’t overdo it, or inadvertently obscure your text.) Still more to do, though. Onwards. 5. Icons Last year’s 24 ways taught us to use icon fonts for our site icons. This is great for the time-pressed coder, because icon fonts don’t just cut down on HTTP requests – they’re a lot quicker to set up than image-based icons, too. Bootstrap ships with an extensive, free for commercial use icon set in the shape of Font Awesome. Its icons are safe for screen readers, and can even be made to work in IE7 if needed (we’re not going to bother here). To start using these icons, just download Font Awesome, and add the /fonts/ directory to your site and the font-awesome.css file into your /css/ directory. Then add a reference to the CSS file in your header: <link rel="stylesheet" href="/css/font-awesome.css"> Finally, we’ll add a truck icon to the main action button, as follows. Why a truck? Why not? <a class="btn btn-large btn-success" href="#"><i class="icon-truck"></i> Sign up today</a> We’ll also tweak our CSS file to stop the icon nudging up against the button text: .jumbotron .btn i { margin-right: 8px; } And this is how it looks: Not the most exciting change ever, but it livens up the page a bit. The licence is CC-BY-3.0, so we also include a mention of Font Awesome and its URL in the source code. If you’d like something a little more distinctive, Shifticons lets you pay a few cents for individual icons, with the bonus that you only have to serve the icons you actually use, which is more efficient. Its icons are also friendly to screen readers, but won’t work in IE7. 6. CSS3 The next thing you could do is add some CSS3 goodness. It can really help the key elements of the site stand out. If you are pressed for time, just adding box-shadow and text-shadow to emphasize headings and standouts can be useful: h1 { text-shadow: 1px 1px 1px #ccc; } .div-that-you want-to-stand-out { box-shadow: 0 0 1em 1em #ccc; } We have a little more time though, so we’re going to do something more subtle. We’ll add a radial gradient behind the main heading, using an online gradient editor. The output is hefty, but you can see it in the CSS. Note that we also need to add the following to our HTML, for IE9 support: <!--[if gte IE 9]> <style type="text/css"> .gradient { filter: none; } </style> <![endif]--> And the effect – I don’t know what a designer would think, but I like the way it makes the heading pop. For a crash course in useful modern CSS effects, I highly recommend CodeSchool’s online course in Functional HTM5 and CSS3. It costs money ($25 a month to subscribe), but it’s worth it for the time you’ll save. As a bonus, you also get access to some excellent JavaScript, Ruby and GitHub courses. (Incidentally, if you find yourself fighting with basic float and display attributes in CSS – and there’s no shame in it, CSS layout is not intuitive – I recommend the CSS Cross-Country course at CodeSchool.) 7. Add a twist We could leave it there, but we’re going to add a background image, and give the site some personality. This is the area of design that I think many programmers find most intimidating. How do we create the graphics and photographs that a designer would use? The answer is iStockPhoto and its competitors – online image libraries where you can find and pay for images. They won’t be unique, but for our purposes, that’s fine. We’re going to use a Christmassy image. For a twist, we’re going to use Backstretch to make it responsive. We must pay for the image, then download it to our /img/ directory. Then, we set it as our <body>’s background-image, by including a JavaScript file with just the following line: $.backstretch("/img/winter.jpg"); We also reset the subtle pattern to become the background for our container image. It would look much better transparent, so we can use this technique in GIMP to make it see-through: .container-narrow { background: url(/img/cream_dust_transparent.png) repeat 0 0; } We also fiddle with the padding on body and .container-narrow a bit, and this is the result: (Aside: If this were a real site, I’d want to buy images in multiple sizes and ensure that Backstretch chose the most appropriately sized image for our screen, perhaps using responsive images.) How to find the effects that make a site interesting? I keep a set of bookmarks for interesting JavaScript and CSS effects I might want to use someday, from realistic shadows to animating grids. The JavaScript Weekly newsletter is a great source of ideas. 8. Colour schemes We’re just about getting there – though we’re probably past half an hour now – but that button and that menu still both look awfully Bootstrappy. Real sites, with real designers, have a colour palette, carefully chosen to harmonize and match the brand profile. For our purposes, we’re just going to borrow some colours from the image. We use Gimp’s colour picker tool to identify the hex values of the blue of the snow. Then we can use Color Scheme Designer to find contrasting, but complementary, colours. Finally, we use those colours for our central button. There are lots of tools to help us do this, such as Bootstrap Buttons. The new HTML is quite long, so I won’t paste it all here, but you can find it in the CSS file. We also reset the colour of the pills in the navigation menu, which is a bit easier: .nav-pills > .active > a, .nav-pills > .active > a:hover { background-color: #FF9473; } I’m not sure if the result is great to be honest, but at least we’ve lost those Bootstrap-blue buttons: Another way to do it, if you didn’t have an image to match, would be to borrow an attractive colour scheme. Colourlovers is a community where people create and share ready-made colour palettes. The key thing is to find a palette with an open licence, so you can legitimately use it. Unfortunately, you can’t search for palettes by licence type, but many do have open licences. Here’s a popular palette with a CC-BY-SA licence that allows reuse with attribution. As above, you can use the hex values from the palette in your custom CSS, and bask in the newly colourful results. 9. Read on With the above techniques, you can make a site that is starting to look slightly more professional, pretty quickly. If you have the time to invest, it’s well worth learning some design principles, if only so that design seems less intimidating and more like fun. As part of my design learning, I read a few introductory design books aimed at coders. The best I found was David Kadavy’s Design for Hackers: Reverse-Engineering Beauty, which explains the basic principles behind choosing colours, fonts, typefaces and layout. In the introduction to his book, David writes: No group stands to gain more from design literacy than hackers do… The one subject that is exceedingly frustrating for hackers to try to learn is design. Hackers know that in order to compete against corporate behemoths with just a few lines of code, they need to have good, clear design, but the resources with which to learn design are simply hard to find. Well said. If you have half a day to invest, rather than half an hour, I recommend getting hold of David’s book. And the journey is over. Perhaps that took slightly more than half an hour, but with practice, using the above techniques can become second nature. What useful tools have I missed? Designers, how would you improve on the above? I would love to know, so please give me your views in the comments. 2012 Anna Powell-Smith annapowellsmith 2012-12-16T00:00:00+00:00 https://24ways.org/2012/how-to-make-your-site-look-half-decent/ design
74 Should We Be Reactive? Evolution Looking at the evolution of the web and the devices we use should help remind us that the times we’re adjusting to are just another step on a journey. These times seem to be telling us that we need to embrace flexibility. Imagine an HTML file containing nothing but text. It’s viewable on any web-capable device and reasonably readable: the notion of the universality of the web was very much a founding principle. Right from the beginning, browser vendors understood that we’d want text to reflow (why wouldn’t we?), so I consider the first websites to have been fluid. As we attempted to exert more control through our designs in the early days of the web, debates about whether we should produce fixed or fluid sites raged. We could create fluid designs using tables, but what we didn’t have then was a wide range of web capable devices or the ability to control this fluidity. The biggest changes occurred when stats showed enough people using a different screen resolution we could cater for. To me, the techniques of responsive web design provide the control we were missing. Combining new approaches to layout and images with media queries empowered us to learn how to embrace the inherent flexibility of the web in ways to suit our work and the devices used by our audience. Perhaps another kind of flexibility might be found in how we use context to affect how we present our content; to consider how we might use the information we can access from people, browsers and devices to provide web experiences – effectively creating sites that react to initial or changing circumstances in the relationship between people and our content. Embracing flexibility So what is context? Put simply, you could think of it as a secondary piece of information that helps clarify the meaning of the first. It helps set a scene or describe circumstances. I think that Cennydd Bowles has summed it up really well through talks he’s given recently, in which he’s arrived at the acronym DETAILS (Device, Environment, Time, Activity, Individual, Location, Social) – I encourage you to keep an eye out for his next book due in the new year where he’ll explore this idea much further. This clarity over what context could mean in terms of what we do on the web is fundamental, directing us towards ways we might use it. When you stop to think about it, we’ve been using some basic pieces of this information right from the beginning, like bits of JavaScript or Java applets that serve an appropriate greeting to your site’s visitors, or show their location, or even local weather. But what if we think of this from the beginning of our projects? We should think about our content first. Once we know this and have a direction, perhaps then we can think about what context, or even multiple contexts, might help us to communicate more effectively. The real world There’s always been a disconnect between the real world and the web, which is to be expected. But the world around us is a sea of data; every fundamental building block: people, places, events and things have information waiting to be explored. For sites based around physical objects or locations, this divide is really apparent. We don’t ordinarily take the time to describe in code the properties of a place, or consider whether your relationship to the place in the real world should have any impact on your relationship with a site about it. When I think about local businesses, they have such rich properties to draw on and yet we don’t really explore them in any meaningful way, even through something as simple as opening hours. Now we have data… We’ve long had access to the current time both on server- and client-sides. The use of geolocation is easier than ever, but when we look at the range of information we could glean to help us make some choices, maybe there’s some help on the horizon from projects like the W3C Device APIs Working Group. This might prove useful to help make us aware of network and battery conditions of a device, along with the potential to gain data from other sensors, which could tell us about lighting conditions, ambient noise levels and temperature depending on the capabilities of the device. It may be that our sites have some form of login or access to your profile from another site. Along with data from our devices and browsers, this should give us a sense of how best to talk to our audience in certain situations. We don’t necessarily need to know any personal details, just enough to make decisions about how to present our sites. The reactive web? So why reactive web design? I’m hoping that a name might help us to have a common vocabulary not only about what we mean when we talk about context, but how it could be considered through our projects, right from the early stages. How could this manifest itself? A simple example might be a location-aware panel on your site. Perhaps the space is a little down in your content hierarchy but serves a perfectly valid purpose by default. To visitors outside the country perhaps this works fine, but within your country maybe this panel could be used to communicate more effectively. Further still, if we knew the visitors were in the vicinity, we could talk to them more directly. What if both time and location were relevant? This space could work as before but you could consider how time could intersect with your local audience. If you know they’re local and it’s a certain time of day, you could communicate directly with them. This example isn’t beyond what banner ads often do and uses easily accessible information. There are more unusual combinations we may be able to find, such as movement and presence. Perhaps a site that tells a story, which changes design and content based on whether you’re moving, how long you’ve been on the site and how far you’ve travelled. This isn’t what we typically expect from websites, but we should bear in mind that what websites are now will not be what they become in the future. You could do much of this contextual presentation through native apps, of course. The Silent History, an app novel written and designed for iPad and iPhone, uses an exploration element, providing “hundreds of location-based stories across the U.S. and around the world. These can be read only when your device’s GPS matches the coordinates of the specified location.” But considering the universality of the web, we could redefine what web-based experiences should be like. Not all methods would work well on the web, but that’s a decision that has to be made for a specific project. By thinking more broadly about any web-capable device, we can use what we know to provide relevant experiences for our site’s visitors. We need to be sure what we mean by relevant, of course! Reality bites While there are incredible possibilities, from a simple panel on a site to something bordering on living sites that evolve and change with our circumstances, we need to act with a degree of pragmatism and understand how much of what we could do is based on assumptions and the bias of our own experiences. We could go wild with changing the way our content is presented based on contextual information, but if we’re not careful what we end up with confuses and could provide a very fractured experience. As much as possible we need to think more ethnographically, observe and question people in the situations we think may be relevant, and test our assumptions as early as we can. Even on small projects, there may be ways we can validate our assumptions and test with our audience. The key to applying contextual content or cues is not to break the experience between contextual views (as I think we now wouldn’t when hiding content on a mobile view). It’s another instance of progressive enhancement – as we know certain pieces of information, we can enhance the experience. Also, if you do change content, how can you not make a more cumbersome experience for your visitors? It’s all about communication Content is at the core of what we do, but if we consider context we need to understand the impact on that. The effect could be as subtle as an altered hierarchy, involve swapping out panels of content, or in extreme instances perhaps all of your content might change. In some ways, this extends the notion of adaptive content that Karen McGrane has been talking about, to how we write and store the content we create. Thinking about the the impact of context may require us to re-evaluate our site structure, too. Whatever we decide, we have to be clear what will happen and manage the expectations of our users. The bottom line What I’m proposing isn’t that we go crazy and end up with a confused, disjointed set of experiences across the web. What I hope is that starting right from the beginning of a project, we think about what context is and could be, and see what relevance it might have to what we’re trying to communicate. This strategic process leads us to think about design. We are slowly adapting to what it means to be flexible through responsive and adaptive processes. What does thinking about contextual states mean to us (or designing for state in general)? Does this highlight again how difficult it’ll be for our tools to keep up with our processes and output? In terms of code, the vast majority of this data comes from the client-side through JavaScript. While we can progressively enhance, this could lead to a lot of code bloat through feature or capability detection, and potentially a lot of conditional loading of scripts. It’s a real shame we don’t get much we can rely on from the server-side – we know how unreliable user agents are! We need to understand why we’d do this. Are we trying to communicate well and be useful, or doing it to show off? Underneath it all, what do we base our decisions on? Do we have actual insight or are we proceeding from our assumptions and the bias of our own experiences? Scott Jenson summed it up best for me: (to paraphrase) the pain we put people through has to be greatly outweighed by the value we offer. I see that this could be another potential step in our evolution on the web; continuing this exploration of the flexibility the web allows us. It’s amazing we can do such incredible things from what is essentially a set of disparate, linked documents. 2012 Dan Donald dandonald 2012-12-09T00:00:00+00:00 https://24ways.org/2012/should-we-be-reactive/ design
77 Colour Accessibility Here’s a quote from Josef Albers: In visual perception a colour is almost never seen as it really is[…] This fact makes colour the most relative medium in art.Josef Albers, Interaction of Color, 1963 Albers was a German abstract painter and teacher, and published a very famous course on colour theory in 1963. Colour is very relative — not just in the way that it appears differently across different devices due to screen quality and colour management, but it can also be seen differently by different people — something we really need to be more mindful of when designing. What is colour blindness? Colour blindness very rarely means that you can’t see any colour at all, or that people see things in greyscale. It’s actually a decreased ability to see colour, or a decreased ability to tell colours apart from one another. How does it happen? Inside the typical human retina, there are two types of receptor cells — rods and cones. Rods are the cells that allow us to see dark and light, and shape and movement. Cones are the cells that allow us to perceive colour. There are three types of cones, each responsible for absorbing blue, red, and green wavelengths in the spectrum. Problems with colour vision occur when one or more of these types of cones are defective or absent entirely, and these problems can either be inherited through genetics, or acquired through trauma, exposure to ultraviolet light, degeneration with age, an effect of diabetes, or other factors. Colour blindness is a sex-linked trait and it’s much more common in men than in women. The most common type of colour blindness is called deuteranomaly which occurs in 7% of males, but only 0.5% of females. That’s a pretty significant portion of the population if you really stop and think about it — we can’t ignore this demographic. What does it look like? People with the most common types of colour blindness, like protanopia and deuteranopia, have difficulty discriminating between red and green hues. There are also forms of colour blindness like tritanopia, which affects perception of blue and yellow hues. Below, you can see what a colour wheel might look like to these different people. What can we do? Here are some things you can do to make your websites and apps more accessible to people with all types of colour blindness. Include colour names and show examples One of the most common annoyances I’ve heard from people who are colour-blind is that they often have difficulty purchasing clothing and they will sometimes need to ask another person for a second opinion on what the colour of the clothing might actually be. While it’s easier to shop online than in a physical store, there are still accessibility issues to consider on shopping websites. Let’s say you’ve got a website that sells T-shirts. If you only show a photo of the shirt, it may be impossible for a person to tell what colour the shirt really is. For clarification, be sure to reference the name of the colour in the description of the product. United Pixelworkers does a great job of following this rule. The St. John’s T-shirt has a quirky palette inspired by the unofficial pink, white and green Newfoundland flag, and I can imagine many people not liking it. Another common problem occurs when a colour filter has been added to a product search. Here’s an example from a clothing website with unlabelled colour swatches, and how that might look to someone with deuteranopia-type colour blindness. The colour search filter below, from the H&M website, is much better since it uses names instead. At first glance, Urban Outfitters also uses unlabelled colour swatches on product pages (below), but on closer inspection, the colour name is displayed on hover. This isn’t an ideal solution, because although it’ll work on a desktop browser, it won’t work on a touchscreen device where hovering isn’t an option. Using overly fancy colour names, like the ones you might find labelling high-end interior paint can be just as confusing as not using a colour name at all. Names like grape instead of purple don’t really give the viewer any useful information about what the colour actually is on a colour wheel. Is grape supposed to be purple, or could it refer to red grapes or even green? Stick with hue names as much as possible. Avoid colour-specific instructions When designing forms, avoid labelling required fields only with coloured text. It’s safer to use a symbol cue like the asterisk which is colour-independent. A similar example would be directing a user to click a green button to purchase a product. Label your buttons clearly and reference them in the site copy by function, not colour, to avoid confusion. Don’t rely on colour coding Designing accessible maps and infographics can be much more challenging. Don’t rely on colour coding alone — try to use a combination of colour and texture or pattern, along with precise labels, and reflect this in the key or legend. Combine a blue background with a crosshatched pattern, or a pink background with a stippled dot — your users will always have two pieces of information to work with. The map of the London subway system is an iconic image not just in London, but around the world. Unfortunately, it contains some colours that are indistinguishable from each other to a person with a vision problem. This is true not only for the London underground, but also for any other wayfinding system that relies on colour coding as the only key in a legend. There are printable versions of the map available online in black and white, using patterns and shades of black and grey that are distinguishable, but the point is that there would be no need for such a map if it were designed with accessibility in mind from the beginning. And, if you’re a person who has a physical disability as well as a vision problem, the “Step-Free” guide map which shows stations is based on the original coloured map. Provide alternatives and customization While it’s best to consider these issues and design your app to be accessible by default, sometimes this might not be possible. Providing alternative styles or allowing users to edit their own colours is a feature to keep in mind. The developers of the game Faster Than Light created an alternate colour-blind mode and asked for public feedback to make sure that it passed the test. Not much needed to be done, but you can see they added stripes to the red zones and changed some outlines to blue. iChat is also a good example. Although by default it uses coloured bubbles to indicate a user’s status (available for chat, away or idle, or busy), included in the preferences is a “User Shapes to Indicate Status” option, which changes the shape of the standard circles to green circles, yellow triangles and red squares. Pay attention to contrast Colours that are similar in value but different in hue may be easy to distinguish between for a user with good vision, but a person who suffers from colour blindness may not be able to tell them apart at all. Proofing your work in greyscale is a quick way to tell if there’s enough contrast between the most important information in your design. Check with a simulator There are many tools out there for simulating different types of colour blindness, and it’s worth checking your design to catch any potential problems up front. One is called Sim Daltonism and it’s available for Mac OS X. It’ll show a pop-up preview next to your cursor and you can choose which type of colour blindness you want to test from a drop-down menu. You can also proof for the two most common types of colour blindness right in Photoshop or Illustrator (CS4 and later) while you’re designing. The colour contrast check tool from designer and developer Jonathan Snook gives you the option to enter a colour code for a background, and a colour code for text, and it’ll tell you if the colour contrast ratio meets the Web Content Accessibility Guidelines 2.0. You can use the built-in sliders to adjust your colours until they meet the compliant contrast ratios. This is a great tool to test your palette before going live. For live websites, you can use the accessibility tool called WAVE, which also has a contrast checker. It’s important to keep in mind, though, that while WAVE can identify contrast errors in text, other things can slip through, so a site that passes the test does not automatically mean it’s accessible in reality. For example, the contrast checker here doesn’t notice that our red link in the introduction isn’t underlined, and therefore could blend into the surrounding paragraph text. I know that once I started getting into the habit of checking my work in a simulator, I became more mindful of any potential problem areas and it was easier to avoid them up front. It’s also made me question everything I see around me and it sends red flags off in my head if I think it’s a serious colour blindness fail. Understanding that colour is relative in the planning stages and following these tips will help us make more accessible design for all. 2012 Geri Coady gericoady 2012-12-04T00:00:00+00:00 https://24ways.org/2012/colour-accessibility/ design
84 Responsive Responsive Design Now more than ever, we’re designing work meant to be viewed along a gradient of different experiences. Responsive web design offers us a way forward, finally allowing us to “design for the ebb and flow of things.” With those two sentences, Ethan closed the article that introduced the web to responsive design. Since then, responsive design has taken the web by storm. Seemingly every day, some company is touting their new responsive redesign. Large brands such as Microsoft, Time and Disney are getting in on the action, blowing away the once common criticism that responsive design was a technique only fit for small blogs. Certainly, this is a good thing. As Ethan and John Allsopp before him, were right to point out, the inherent flexibility of the web is a feature, not a bug. The web’s unique ability to be consumed and interacted with on any number of devices, with any number of input methods is something to be embraced. But there’s one part of the web’s inherent flexibility that seems to be increasingly overlooked: the ability for the web to be interacted with on any number of networks, with a gradient of bandwidth constraints and latency costs, on devices with varying degrees of hardware power. A few months back, Stephanie Rieger tweeted “Shoot me now…responsive design has seemingly become confused with an opportunity to reduce performance rather than improve it.” I would love to disagree, but unfortunately the evidence is damning. Consider the size and number of requests for four highly touted responsive sites that were launched this year: 74 requests, 1,511kb 114 requests, 1,200kb 99 requests, 1,298kb 105 requests, 5,942kb And those numbers were for the small screen versions of each site! These sites were praised for their visual design and responsive nature, and rightfully so. They’re very easy on the eyes and a lot of thought went into their appearance. But the numbers above tell an inconvenient truth: for all the time spent ensuring the visual design was airtight, seemingly very little (if any) attention was given to their performance. It would be one thing if these were the exceptions, but unfortunately they’re not. Guy Podjarny, who has done a lot of research around responsive performance, discovered that 86% of the responsive sites he tested were either the same size or larger on the small screen as they were on the desktop. The reality is that high performance should be a requirement on any web project, not an afterthought. Poor performance has been tied to a decrease in revenue, traffic, conversions, and overall user satisfaction. Case study after case study shows that improving performance, even marginally, will impact the bottom line. The situation is no different on mobile where 71% of people say they expect sites to load as quickly or faster on their phone when compared to the desktop. The bottom line: performance is a fundamental component of the user experience. So, given it’s extreme importance in the success of any web project, why is it that we’re seeing so many bloated responsive sites? First, I adamantly disagree with the belief that poor performance is inherent to responsive design. That’s not a rule – it’s a cop-out. It’s an example of blaming the technique when we should be blaming the implementation. This argument also falls flat because it ignores the fact that the trend of fat sites is increasing on the web in general. While some responsive sites are the worst offenders, it’s hardly an issue resigned to one technique. To fix the issue, we need to stop making excuses and start making improvements instead. Here, then, are some things we can do to start improving the state of responsive performance, and performance in general, right now. Create a culture of performance If you understand just how important performance is to the success of a project, the natural next step is to start creating a culture where high performance is a key consideration. One of the things you can do is set a baseline. Determine the maximum size and number of requests you are going to allow, and don’t let a page go live if either of those numbers is exceeded. The BBC does this with its responsive mobile site. A variation of that, which Steve Souders discussed in a recent podcast is to create a performance budget based on those numbers. Once you have that baseline set, if someone comes along and wants to add a something to the page, they have to make sure the page remains under budget. If it exceeds the budget, you have three options: Optimize an existing feature or asset on the page Remove an existing feature or asset from the page Don’t add the new feature or asset The idea here is that you make performance part of the process instead of something that may or may not get tacked on at the end. Embrace the pain This troubling trend of web bloat can be blamed in part on the lack of pain associated with poor performance. Most of us work on high-speed connections with low latency. When we fire up a 4Mb site, it doesn’t feel so bad. When I tested the previously mentioned 5,942kb site on a 3G network, it took over 93 seconds to load. A minute and a half just staring at a white screen. Had anyone working on that project experienced that, you can bet the site wouldn’t have launched in that state. Don’t just crunch numbers. Fire up your site on a slower network and see what it feels like to wait. If you don’t have access to a slow network, simulate one using a tool like Slowy, Throttle or the Network Conditioner found in Mac OS X 10.7. Watch for low-hanging fruit There are a bunch of general performance improvements that apply to any site (responsive or not) but often aren’t made. A great starting point is to refer to Yahoo!‘s list of rules. Some of this might sound complicated or intimidating, but it doesn’t have to be. You can grab an .htaccess file from HTML 5 Boilerplate or use Sergey Chernyshev’s drop-in .htaccess file. You can use tools like SpriteMe to simplify the creation of sprites, and ImageOptim to compress images. Just by implementing these simple optimizations you will achieve a noticeable improvement in terms of weight and page load time. Be careful with images The most common offender for poor responsive performance is downloading unnecessarily large images, or worse yet, multiple sizes of the same image. For background images, simply being careful with where and how you include the image can ensure you don’t get caught in the trap of multiple background images being downloaded without being used. Don’t count on display:none to help. While it may hide elements from displaying on screen, those images will still be requested and downloaded. Content images can be a little trickier. Whatever you do, don’t serve a large image that works on a large screen display to small screens. It’s wasteful, not only in terms of adding weight to the page, but also in wasting precious memory. Instead, use a tool like Adaptive Images or src.sencha.io to make sure only appropriately sized images are being downloaded. The new <picture> element that has been so often discussed is another excellent solution if you’re feeling particularly future-oriented. A picture polyfill exists so that you can start using the element now without any worries about support. Conditional loading Don’t load any more than you absolutely need to. If a script isn’t needed at certain sizes, use the matchMedia polyfill to ensure it only loads when needed. Use eCSSential to do the same for unnecessary CSS files. Last year on 24 ways, Jeremy Keith wrote an article about conditional loading of content in a responsive design based on the screen width. The technique was later refined by the Filament Group into what they dubbed the Ajax-Include Pattern. It’s a powerful and simple way to lighten the load on small screens as well as reduce clutter. Go vanilla? If you take a look at the HTTP Archive you’ll see that other than image size, JavaScript is the heaviest asset on a page weighing in at 215kb on average. It also boasts the fifth highest correlation to load time as well as the second highest correlation to render time. Much of the weight can be attributed to our industry’s increasing reliance on frameworks. This is especially a concern on mobile devices. PPK recently exclaimed that current JavaScript libraries are just “too heavy for mobile”. “Research from Stoyan Stefanov on parse times supports this. On some Android and iOS devices, it can take as long as 200-300ms just to parse jQuery. There’s nothing wrong about using a framework, but the problem is that they’ve become the default. Before dropping another framework or plugin into a page, we should stop to consider the value it adds and whether we could accomplish what we need to do using a combination of vanilla JavaScript and CSS instead. (This is a great example of a scenario where a performance budget could help.) Start thinking beyond visual aesthetics We love to tout the web’s universality when discussing the need for responsive design. But that universality is not limited simply to screen size. Networks and hardware capabilities must factor in as well. The web is an incredibly dynamic and interactive medium, and designing for it demands that we consider more than just visual aesthetics. Let’s not forget to give those other qualities the attention they deserve. 2012 Tim Kadlec timkadlec 2012-12-05T00:00:00+00:00 https://24ways.org/2012/responsive-responsive-design/ design
93 Design Systems The most important part of responsive web design is that, no matter what the viewport width, the content is accessible in an optimum display. The best responsive designs are those that allow you to go from one optimised display to another, but with the feeling that these experiences are part of a greater product whole. Responsive design: where we’ve been going wrong Responsive web design was a shock to my web designer system. Those of us who had already been designing sites for mobile probably had the biggest leap to make. We might have been detecting user agents in order to deliver a mobile-specific site, or using the slightly more familiar Bushido technique to deliver sites optimised for device type and viewport size, but either way our focus was on devices. A site was optimised for either a mobile phone or a desktop. Responsive web design brought us back to pre-table layout fluid sites that expanded or contracted to fit the viewport. This was a big difference to get our heads around when we were so used to designing for fixed-width layouts. Suddenly, an element could be any width or, at least, we needed to consider its maximum and minimum widths. Pixel perfection, while pretty, became wholly unrealistic, and a whole load of designers who prided themselves in detailed and precise designs got a bit scared. Hanging on to our previous processes and typical deliverables led us to continue to optimise our sites for particular devices and provide pixel-perfect mockups for those device widths. With all this we were concentrating on devices, not content, deliverables and not process, and making assumptions about users and their devices based on nothing but the width of the viewport. I don’t think this is a crime, I think it was inevitable. We can be up to date with our principles and ideals, but it’s never as easy in practice. That’s why it’s more important than ever to share our successful techniques and processes. Let’s drag each other into modern web design. Design systems: the principles What are design systems? A visual design system is built out of the core components of typography, layout, shape or form, and colour. When considering the design of a whole product, a design system should also include patterns in user flow, content strategy, copy, and tone of voice. These concepts, design decisions or rules, created around the core components are used consistently across your product to create a cohesive feel, whether it’s from one element to another, page to page, or viewport width to viewport width. Responsive design is one of the most important considerations in the components of a design system. For each component, you must decide what will unite the design across the viewports to maintain that consistent feel, and what parts of the design will differentiate in order to provide a flexible and optimal experience for different viewport sizes. Components you might keep the same across viewports typeface base unit colour shape/form Components you might differentiate across viewports grids layout font size measure (line length) leading (line height) Content: it must always be the same The focus of a design system is the optimum display of content. As Mark Boulton put it, designing “content out, not canvas in.” Chris Armstrong puts the emphasis on not designing for viewports but for content – “we need to build on what we do know: content.” In order to do this, we must share the same content across all devices and focus on how best to display and represent content through design system components. The practical: core visual components Typography first When you work with a lot of text content, typography is the easiest way to set the visual tone of the design across all viewport widths. It’s likely that you’ll choose one or two typefaces to use across the whole system, but you might change the most legible font size, balanced with the most comfortable measure, as the viewport width changes. Where typography meets layout The unit on which you choose to base the grid and layout design, font sizes and leading could be based on the typeface, an optimal reading size, or something more arbitrary. Sometimes I’ll choose a unit based on multiples of ten because it makes the maths in the CSS easier. Tim Brown suggests trying a modular scale. Chris Armstrong suggests basing it on your ideal measure, or the width of a fixed item of content such as an ad unit. Grids and layouts Sensible grid design can be a flexible yet solid foundation for your design system layout component. But you must be wary in responsive design that a grid might not work across all widths: even four columns could make for very cramped content and one-word measures on smaller screens. Maybe the grid columns are something you differentiate across widths, but you can keep the concept of the grid consistent. If the content has blocks in groups of three, you might decide on a three-column grid which folds down to one column for narrow viewports. If the grid focuses on the idea of symmetry and has a four-column grid on larger viewports, it might fold down to two columns for narrower viewports. These consistencies may seem subtle, not at all obvious to many except the designer, but it’s all these little constants and patterns across the whole of the design system that makes design decisions easier to make (as they adhere to the guiding concepts of your system), and give the product a uniform feel no matter what the device. Shape or form The shape or form components are concepts you already use in fixed-width web design for a strong, consistent look and feel. Since CSS border-radius became widely supported by browsers, a lot of designs feature circle themes. These are very distinctive and can be used across viewport widths giving them the same united feel, even if they’re not used in the same way. This could also apply to border styles, consistent shadows and any number of decorative details and textures. These are the elements that make up the shape or form of a design system. Colour Colour is the most basic way to reinforce a brand and unite experiences across viewports. The same hex colour used system-wide is instantly recognisable, no matter what the viewport width. The process While using a design system isn’t necessarily attached to any particular process, it does lend itself to some process ideals. Detaching design considerations from viewport widths A design system allows you to focus separately on the components that make up the system, disconnecting the look and feel from the layout. This helps prevent us getting stuck in the rut of the Apple breakpoints (brilliantly coined by Simon Foster) of mobile, tablet and desktop. It also forces us to design for variation in viewport experiences side by side, not one after the other. Design in the browser I can’t start off designing in the browser – it just doesn’t seem to bring out my creative side (and I’m incredibly envious of you if you can; I just have to start on paper) – but static mock-ups aren’t the only alternative. Style guides and style tiles are perfect for expressing the concepts of your design system. Pattern libraries could also work well. Mock-ups and breakpoints At some point, whether it’s to test your system ideas, or because a client needs help visualising how your system might work, you may end up producing some static mock-ups. It’s not the end of the world, but you must ensure that these consider all the viewports, not just those of the iDevices, or even the devices currently on the market. You need to decide the breakpoints where the states of your design change. The blocks within your content will always have optimum points for their display (based on their hierarchy, density, width, or type of interaction) and so your breakpoints should be based around these points. These are probably the ideal points at which to produce static mockups; treat them as snapshots. They’re not necessarily mock-ups, so much as a way of capturing how your design system would be interpreted when frozen at that particular viewport width. The future Creating design systems will give us the flexibility we need for working with the unknown devices of the future. It may be a change in process, but it shouldn’t be too much of a difference in thinking. The pioneers in responsive design have a hard job. Some of these problems may have already been solved in other technologies or industries, but it’s up to the pioneers to find those connections and help us formulate solutions and standards that will make responsive design the best it can possibly be. We need to keep experimenting and communicating, particularly in the area of design, as good user experiences are the true sign of whether our products are a success. 2012 Laura Kalbag laurakalbag 2012-12-12T00:00:00+00:00 https://24ways.org/2012/design-systems/ design
141 Compose to a Vertical Rhythm “Space in typography is like time in music. It is infinitely divisible, but a few proportional intervals can be much more useful than a limitless choice of arbitrary quantities.” So says the typographer Robert Bringhurst, and just as regular use of time provides rhythm in music, so regular use of space provides rhythm in typography, and without rhythm the listener, or the reader, becomes disorientated and lost. On the Web, vertical rhythm – the spacing and arrangement of text as the reader descends the page – is contributed to by three factors: font size, line height and margin or padding. All of these factors must calculated with care in order that the rhythm is maintained. The basic unit of vertical space is line height. Establishing a suitable line height that can be applied to all text on the page, be it heading, body copy or sidenote, is the key to a solid dependable vertical rhythm, which will engage and guide the reader down the page. To see this in action, I’ve created an example with headings, footnotes and sidenotes. Establishing a suitable line height The easiest place to begin determining a basic line height unit is with the font size of the body copy. For the example I’ve chosen 12px. To ensure readability the body text will almost certainly need some leading, that is to say spacing between the lines. A line-height of 1.5em would give 6px spacing between the lines of body copy. This will create a total line height of 18px, which becomes our basic unit. Here’s the CSS to get us to this point: body { font-size: 75%; } html>body { font-size: 12px; } p { line-height 1.5em; } There are many ways to size text in CSS and the above approach provides and accessible method of achieving the pixel-precision solid typography requires. By way of explanation, the first font-size reduces the body text from the 16px default (common to most browsers and OS set-ups) down to the 12px we require. This rule is primarily there for Internet Explorer 6 and below on Windows: the percentage value means that the text will scale predictably should a user bump the text size up or down. The second font-size sets the text size specifically and is ignored by IE6, but used by Firefox, Safari, IE7, Opera and other modern browsers which allow users to resize text sized in pixels. Spacing between paragraphs With our rhythmic unit set at 18px we need to ensure that it is maintained throughout the body copy. A common place to lose the rhythm is the gaps set between margins. The default treatment by web browsers of paragraphs is to insert a top- and bottom-margin of 1em. In our case this would give a spacing between the paragraphs of 12px and hence throw the text out of rhythm. If the rhythm of the page is to be maintained, the spacing of paragraphs should be related to the basic line height unit. This is achieved simply by setting top- and bottom-margins equal to the line height. In order that typographic integrity is maintained when text is resized by the user we must use ems for all our vertical measurements, including line-height, padding and margins. p { font-size:1em; margin-top: 1.5em; margin-bottom: 1.5em; } Browsers set margins on all block-level elements (such as headings, lists and blockquotes) so a way of ensuring that typographic attention is paid to all such elements is to reset the margins at the beginning of your style sheet. You could use a rule such as: body,div,dl,dt,dd,ul,ol,li,h1,h2,h3,h4,h5,h6,pre,form,fieldset,p,blockquote,th,td { margin:0; padding:0; } Alternatively you could look into using the Yahoo! UI Reset style sheet which removes most default styling, so providing a solid foundation upon which you can explicitly declare your design intentions. Variations in text size When there is a change in text size, perhaps with a heading or sidenotes, the differing text should also take up a multiple of the basic leading. This means that, in our example, every diversion from the basic text size should take up multiples of 18px. This can be accomplished by adjusting the line-height and margin accordingly, as described following. Headings Subheadings in the example page are set to 14px. In order that the height of each line is 18px, the line-height should be set to 18 ÷ 14 = 1.286. Similarly the margins above and below the heading must be adjusted to fit. The temptation is to set heading margins to a simple 1em, but in order to maintain the rhythm, the top and bottom margins should be set at 1.286em so that the spacing is equal to the full 18px unit. h2 { font-size:1.1667em; line-height: 1.286em; margin-top: 1.286em; margin-bottom: 1.286em; } One can also set asymmetrical margins for headings, provided the margins combine to be multiples of the basic line height. In our example, a top margin of 1½ lines is combined with a bottom margin of half a line as follows: h2 { font-size:1.1667em; line-height: 1.286em; margin-top: 1.929em; margin-bottom: 0.643em; } Also in our example, the main heading is given a text size of 18px, therefore the line-height has been set to 1em, as has the margin: h1 { font-size:1.5em; line-height: 1em; margin-top: 0; margin-bottom: 1em; } Sidenotes Sidenotes (and other supplementary material) are often set at a smaller size to the basic text. To keep the rhythm, this smaller text should still line up with body copy, so a calculation similar to that for headings is required. In our example, the sidenotes are set at 10px and so their line-height must be increased to 18 ÷ 10 = 1.8. .sidenote { font-size:0.8333em; line-height:1.8em; } Borders One additional point where vertical rhythm is often lost is with the introduction of horizontal borders. These effectively act as shims pushing the subsequent text downwards, so a two pixel horizontal border will throw out the vertical rhythm by two pixels. A way around this is to specify horizontal lines using background images or, as in our example, specify the width of the border in ems and adjust the padding to take up the slack. The design of the footnote in our example requires a 1px horizontal border. The footnote contains 12px text, so 1px in ems is 1 ÷ 12 = 0.0833. I have added a margin of 1½ lines above the border (1.5 × 18 ÷ 12 = 2.5ems), so to maintain the rhythm the border + padding must equal a ½ (9px). We know the border is set to 1px, so the padding must be set to 8px. To specify this in ems we use the familiar calculation: 8 ÷ 12 = 0.667. Hit me with your rhythm stick Composing to a vertical rhythm helps engage and guide the reader down the page, but it takes typographic discipline to do so. It may seem like a lot of fiddly maths is involved (a few divisions and multiplications never hurt anyone) but good type setting is all about numbers, and it is this attention to detail which is the key to success. 2006 Richard Rutter richardrutter 2006-12-12T00:00:00+00:00 https://24ways.org/2006/compose-to-a-vertical-rhythm/ design
152 CSS for Accessibility CSS is magical stuff. In the right hands, it can transform the plainest of (well-structured) documents into a visual feast. But it’s not all fur coat and nae knickers (as my granny used to say). Here are some simple ways you can use CSS to improve the usability and accessibility of your site. Even better, no sexy visuals will be harmed by the use of these techniques. Promise. Nae knickers This is less of an accessibility tip, and more of a reminder to check that you’ve got your body background colour specified. If you’re sitting there wondering why I’m mentioning this, because it’s a really basic thing, then you might be as surprised as I was to discover that from a sample of over 200 sites checked last year, 35% of UK local authority websites were missing their body background colour. Forgetting to specify your body background colour can lead to embarrassing gaps in coverage, which are not only unsightly, but can prevent your users reading the text on your site if they use a different operating system colour scheme. All it needs is the following line to be added to your CSS file: body {background-color: #fff;} If you pair it with color: #000; … you’ll be assured of maintaining contrast for any areas you inadvertently forget to specify, no matter what colour scheme your user needs or prefers. Even better, if you’ve got standard reset CSS you use, make sure that default colours for background and text are specified in it, so you’ll never be caught with your pants down. At the very least, you’ll have a white background and black text that’ll prompt you to change them to your chosen colours. Elbow room Paying attention to your typography is important, but it’s not just about making it look nice. Careful use of the line-height property can make your text more readable, which helps everyone, but is particularly helpful for those with dyslexia, who use screen magnification or simply find it uncomfortable to read lots of text online. When lines of text are too close together, it can cause the eye to skip down lines when reading, making it difficult to keep track of what you’re reading across. So, a bit of room is good. That said, when lines of text are too far apart, it can be just as bad, because the eye has to jump to find the next line. That not only breaks up the reading rhythm, but can make it much more difficult for those using Screen Magnification (especially at high levels of magnification) to find the beginning of the next line which follows on from the end of the line they’ve just read. Using a line height of between 1.2 and 1.6 times normal can improve readability, and using unit-less line heights help take care of any pesky browser calculation problems. For example: p { font-family: "Lucida Grande", Lucida, Verdana, Helvetica, sans-serif; font-size: 1em; line-height: 1.3; } or if you want to use the shorthand version: p { font: 1em/1.3 "Lucida Grande", Lucida, Verdana, Helvetica, sans-serif; } View some examples of different line-heights, based on default text size of 100%/1em. Further reading on Unitless line-heights from Eric Meyer. Transformers: Initial case in disguise Nobody wants to shout at their users, but there are some occasions when you might legitimately want to use uppercase on your site. Avoid screen-reader pronunciation weirdness (where, for example, CONTACT US would be read out as Contact U S, which is not the same thing – unless you really are offering your users the chance to contact the United States) caused by using uppercase by using title case for your text and using the often neglected text-transform property to fake uppercase. For example: .uppercase { text-transform: uppercase } Don’t overdo it though, as uppercase text is harder to read than normal text, not to mention the whole SHOUTING thing. Linky love When it comes to accessibility, keyboard only users (which includes those who use voice recognition software) who can see just fine are often forgotten about in favour of screen reader users. This Christmas, share the accessibility love and light up those links so all of your users can easily find their way around your site. The link outline AKA: the focus ring, or that dotted box that goes around links to show users where they are on the site. The techniques below are intended to supplement this, not take the place of it. You may think it’s ugly and want to get rid of it, especially since you’re going to the effort of tarting up your links. Don’t. Just don’t. The non-underlined underline If you listen to Jacob Nielsen, every link on your site should be underlined so users know it’s a link. You might disagree with him on this (I know I do), but if you are choosing to go with underlined links, in whatever state, then remove the default underline and replacing it with a border that’s a couple of pixels away from the text. The underline is still there, but it’s no longer cutting off the bottom of letters with descenders (e.g., g and y) which makes it easier to read. This is illustrated in Examples 1 and 2. You can modify the three lines of code below to suit your own colour and border style preferences, and add it to whichever link state you like. text-decoration: none; border-bottom: 1px #000 solid; padding-bottom: 2px; Standing out from the crowd Whatever way you choose to do it, you should be making sure your links stand out from the crowd of normal text which surrounds them when in their default state, and especially in their hover or focus states. A good way of doing this is to reverse the colours when on hover or focus. Well-focused Everyone knows that you can use the :hover pseudo class to change the look of a link when you mouse over it, but, somewhat ironically, people who can see and use a mouse are the group who least need this extra visual clue, since the cursor handily (sorry) changes from an arrow to a hand. So spare a thought for the non-pointing device users that visit your site and take the time to duplicate that hover look by using the :focus pseudo class. Of course, the internets being what they are, it’s not quite that simple, and predictably, Internet Explorer is the culprit once more with it’s frustrating lack of support for :focus. Instead it applies the :active pseudo class whenever an anchor has focus. What this means in practice is that if you want to make your links change on focus as well as on hover, you need to specify focus, hover and active. Even better, since the look and feel necessarily has to be the same for the last three states, you can combine them into one rule. So if you wanted to do a simple reverse of colours for a link, and put it together with the non-underline underlines from before, the code might look like this: a:link { background: #fff; color: #000; font-weight: bold; text-decoration: none; border-bottom: 1px #000 solid; padding-bottom: 2px; } a:visited { background: #fff; color: #800080; font-weight: bold; text-decoration: none; border-bottom: 1px #000 solid; padding-bottom: 2px; } a:focus, a:hover, a:active { background: #000; color: #fff; font-weight: bold; text-decoration: none; border-bottom: 1px #000 solid; padding-bottom: 2px; } Example 3 shows what this looks like in practice. Location, Location, Location To take this example to it’s natural conclusion, you can add an id of current (or something similar) in appropriate places in your navigation, specify a full set of link styles for current, and have a navigation which, at a glance, lets users know which page or section they’re currently in. Example navigation using location indicators. and the source code Conclusion All the examples here are intended to illustrate the concepts, and should not be taken as the absolute best way to format links or style navigation bars – that’s up to you and whatever visual design you’re using at the time. They’re also not the only things you should be doing to make your site accessible. Above all, remember that accessibility is for life, not just for Christmas. 2007 Ann McMeekin annmcmeekin 2007-12-13T00:00:00+00:00 https://24ways.org/2007/css-for-accessibility/ design
167 Back To The Future of Print By now we have weathered the storm that was the early days of web development, a dangerous time when we used tables, inline CSS and separate pages for print only versions. We can reflect in a haggard old sea-dog manner (“yarrr… I remember back in the browser wars…”) on the bad practices of the time. We no longer need convincing that print stylesheets are the way to go1, though some of the documentation for them is a little outdated now. I am going to briefly cover 8 tips and 4 main gotchas when creating print stylesheets in our more enlightened era. Getting started As with regular stylesheets, print CSS can be included in a number of ways2, for our purposes we are going to be using the link element. <link rel="stylesheet" type="text/css" media="print" href="print.css"> This is still my favourite way of linking to CSS files, its easy to see what files are being included and to what media they are being applied to. Without the media attribute specified the link element defaults to the media type ‘all’ which means that the styles within then apply to print and screen alike. The media type ‘screen’ only applies to the screen and wont be picked up by print, this is the best way of hiding styles from print. Make sure you include your print styles after all your other CSS, because you will need to override certain rules and this is a lot easier if you are flowing with the cascade than against it! Another thing you should be thinking is ‘does it need to be printed’. Consider the context3, if it is not a page that is likely to be printed, such as a landing page or a section index then the print styles should resemble the way the page looks on the screen. Context is really important for the design of your print stylesheet, all the tips and tricks that follow should be taken in the context of the page. If for example you are designing a print stylesheet for an item in a shopping cart, it is irrelevant for the user to know the exact url of the link that takes them to your checkout. Tips and tricks During these tip’s we are going to build up print styles for a textileRef:11112857385470b854b8411:linkStartMarker:“simple example”:/examples/back-to-the-future-of-print/demo-1.html 1. Remove the cruft First things first, navigation, headers and most page furniture are pretty much useless and dead space in print so they will need to be removed, using display:none;. 2. Linearise your content Content doesn’t work so well in columns in print, especially if the content columns are long and intend to stretch over multiple columns (as mentioned in the gotcha section below). You might want to consider Lineariseing the content to flow down the page. If you have your source order in correct priority this will make things a lot easier4. 3. Improve your type Once you have removed all the useless cruft and jiggled things about a bit, you can concentrate more on the typography of the page. Typography is a complex topic5, but simply put serif-ed fonts such as Georgia work better on print and sans serif-ed fonts such as Verdana are more appropriate for screen use. You will probably want to increase font size and line height and change from px to pt (which is specifically a print measurement). 4. Go wild on links There are some incredibly fun things you can do with links in print using CSS. There are two schools of thought, one that consider it is best to disguise inline links as body text because they are not click-able on paper. Personally I believe it is useful to know for reference that the document did link to somewhere originally. When deciding which approach to take, consider the context of your document, do people need to know where they would have gone to? will it help or hinder them to know this information? Also for an alternative to the below, take a look at Aaron Gustafson’s article on generating footnotes for print6. Using some clever selector trickery and CSS generated content you can have the location of the link generated after the link itself. HTML: <p>I wish <a href="http://www.google.com/">Google</a> could find <a href="/photoOfMyKeys.jpg">my keys</a></p> CSS: a:link:after, a:visited:after, a:hover:after, a:active:after { content: " <" attr(href) "> "; } But this is not perfect, in the above example the content of the href is just naively plonked after the link text: I wish Google <http://www.google.com/> would find my keys </photoOfMyKeys.jpg> As looking back over this printout the user is not immediately aware of the location of the link, a better solution is to use even more crazy selectors to deal with relative links. We can also add a style to the generated content so it is distinguishable from the link text itself. CSS: a:link:after, a:visited:after, a:hover:after, a:active:after { content: " <" attr(href) "> "; color: grey; font-style: italic; font-weight: normal; } a[href^="/"]:after { content: " <http://www.example.com"attr(href)"> "; } The output is now what we were looking for (you will need to replace example.com with your own root URL): I wish Google <http://www.google.com/> would find my keys <http://www.example.com/photoOfMyKeys.jpg> Using regular expressions on the attribute selectors, one final thing you can do is to suppress the generated content on mailto: links, if for example you know the link text always reflects the email address. Eg: HTML: <a href="mailto:me@example.com">me@example.com</a> CSS: a[href^="mailto"]:after { content: ""; } This example shows the above in action. Of course with this clever technique, there are the usual browser support issues. While it won’t look as intended in browsers such as Internet Explorer 6 and 7 (IE6 and IE7) it will not break either and will just degrade gracefully because IE cannot do generated content. To the best of my knowledge Safari 2+ and Opera 9.X support a colour set on generated content whereas Firefox 2 & Camino display this in black regardless of the link or inherited text colour. 5. Jazz your headers for print This is more of a design consideration, don’t go too nuts though; there are a lot more limitations in print media than on screen. For this example we are going to go for is having a bottom border on h2’s and styling other headings with graduating colors or font sizes. And here is the example complete with jazzy headers. 6. Build in general hooks If you are building a large site with many different types of page, you may find it useful to build into your CSS structure, classes that control what is printed (e.g. noprint and printonly). This may not be semantically ideal, but in the past I have found it really useful for maintainability of code across large and varied sites 7. For that extra touch of class When printing pages from a long URL, even if the option is turned on to show the location of the page in the header, browsers may still display a truncated (and thus useless) version. Using the above tip (or just simply setting to display:none in screen and display:block in print) you can insert the URL of the page you are currently on for print only, using JavaScript’s window.location.href variable. function addPrintFooter() { var p = document.createElement('p'); p.className = 'print-footer'; p.innerHTML = window.location.href; document.body.appendChild(p); } You can then call this function using whichever onload or ondomready handler suits your fancy. Here is our familiar demo to show all the above in action 8. Tabular data across pages If you are using tabled data in your document there are a number of things you can do to increase usability of long tables over several pages. If you use the <thead> element this should repeat your table headers on the next page should your table be split. You will need to set thead {display: table-header-group;} explicitly for IE even though this should be the default value. Also if you use tr {page-break-inside: avoid;} this should (browser support depending) stop your table row from breaking across two pages. For more information on styling tables for print please see the CSS discuss wiki7. Gotchas 1. Where did all my content go? Absolutely the most common mistake I see with print styles is the truncated content bug. The symptom of this is that only the first page of a div’s content will be printed, the rest will look truncated after this. Floating long columns may still have this affect, as mentioned in Eric Meyer’s article on ‘A List Apart’ article from 20028; though in testing I am no longer able to replicate this. Using overflow:hidden on long content in Firefox however still causes this truncation. Overflow hidden is commonly used to clear floats9. A simple fix can be applied to resolve this, if the column is floated you can override this with float:none similarly overflow:hidden can be overridden with overflow:visible or the offending rules can be banished to a screen only stylesheet. Using position:absolute on long columns also has a very similar effect in truncating the content, but can be overridden in print with position:static; Whilst I only recommend having a print stylesheet for content pages on your site; do at least check other landing pages, section indexes and your homepage. If these are inaccessible in print possibly due to the above gotcha, it might be wise to provide a light dusting of print styles or move the offending overflow / float rules to a screen only stylesheet to fix the issues. 2. Damn those background browser settings One of the factors of life you now need to accept is that you can’t control the user’s browser settings, no more than you can control whether or not they use IE6. Most browsers by default will not print background colours or images unless explicitly told to by the user. Naturally this causes a number of problems, for starters you will need to rethink things like branding. At this point it helps if you are doing the print styles early in the project so that you can control the logo not being a background image for example. Where colour is important to the meaning of the document, for example a status on an invoice, bear in mind that a textural representation will also need to be supplied as the user may be printing in black and white. Borders will print however regardless of setting, so assuming the user is printing in colour you can always use borders to indicate colour. Check the colour contrast of the text against white, this may need to be altered without backgrounds. You should check how your page looks with backgrounds turned on too, for consistency with the default browser settings you may want to override your background anyway. One final issue with backgrounds being off is list items. It is relatively common practice to suppress the list-style-type and replace with a background image to finely control the bullet positioning. This technique doesn’t translate to print, you will need to disable this background bullet and re-instate your trusty friend the list-style-type. 3. Using JavaScript in your CSS? … beware IE6 Internet explorer has an issue that when Javascript is used in a stylesheet it applies this to all media types even if only applied to screen. For example, if you happen to be using expressions to set a width for IE, perhaps to mimic min-width, a simple width:100% !important rule can overcome the effects the expression has on your print styles10. 4. De-enhance your Progressive enhancements Quite a classic “doh” moment is when you realise that, of course paper doesn’t support Javascript. If you have any dynamic elements on the page, for example a document collapsed per section, you really should have been using Progressive enhancement techniques11 and building for browsers without Javascript first, adding in the fancy stuff later. If this is the case it should be trivial to override your wizzy JS styles in your print stylesheet, to display all your content and make it accessible for print, which is by far the best method of achieving this affect. And Finally… I refer you back to the nature of the document in hand, consider the context of your site and the page. Use the tips here to help you add that extra bit of flair to your printed media. Be careful you don’t get caught out by the common gotchas, keep the design simple, test cross browser and relish in the medium of print. Further Reading 1 For more information constantly updated, please see the CSS discuss wiki on print stylesheets 2 For more information on media types and ways of including CSS please refer to the CSS discuss wiki on Media Stylesheets 3 Eric Meyer talks to ThinkVitamin about the importance of context when designing your print strategy. 4 Mark Boulton describes how he applies a newspaper like print stylesheet to an article in the Guardian website. Mark also has some persuasive arguments that print should not be left to last 5 Richard Rutter Has a fantastic resource on typography which also applies to print. 6 Aaron Gustafson has a great solution to link problem by creating footnotes at the end of the page. 7 The CSS discuss wiki has more detailed information on printing tables and detailed browser support 8 This ‘A List Apart’ article is dated May 10th 2002 though is still mostly relevant 9 Float clearing technique using ‘overflow:hidden’ 10 Autistic Cuckoo describes the interesting insight with regards to expressions specified for screen in IE6 remaining in print 11 Wikipedia has a good article on the definition of progressive enhancement 12 For a really neat trick involving a dynamically generated column to displaying <abbr> and <dfn> meanings (as well as somewhere for the user to write notes), try print previewing on Brian Suda’s site 2007 Natalie Downe nataliedowne 2007-12-09T00:00:00+00:00 https://24ways.org/2007/back-to-the-future-of-print/ design
Powered by Datasette · Query took 3.859ms